Progressive Education Society's Modern College of Arts, Science and Commerce, Shivajinagar, Pune - 5

T.Y.B.Sc. Physics (2023 Course under NEP 2020)

Course Code: 23ScPhyU5101 Course Name: Classical mechanic and Mathematical Methods of Physics I

Teaching Scheme: TH: 4 Hours/Week Credit: 04

Examination Scheme: CIA: 40 Marks End-Sem: 60 Marks

Prerequisite Courses:

• Familiarity with 10+2 level physics syllabus

• Completed first year course 23ScPhyU1101

Course objective

- To introduce students to the fundamental principles of classical mechanics.
- To develop problem-solving skills using Newtonian, Lagrangian, and Hamiltonian mechanics.
- To understand the motion of particles under central forces and the mechanics of systems of particles. To study the principles of scattering and apply them to physical systems.
- To study Vector calculus and Vector algebra, complex numbers
- To understand the Fourier series expansion and its applications.
- To develop problem-solving skills using different methods of obtaining solutions of differential equations

Course Outcomes:

Successful completion of this course students will able to:

CO No	Course Outcomes (COs)	Bloom's Cognitive level
CO 1	Recall Newton's laws of motion and their applications. Define key concepts like center of mass, conservation laws, and equations of motion. Define and Understand the terms: vector operators, vector spaces, complex numbers, differentiation equations	1
CO 2	Explain the motion of a particle in a central force field. Interpret Kepler's laws of planetary motion. Describe the concepts of scattering and differential cross-section. Understand the physical significance of Gradient of Scalar fields, Diversions and Curl of vector fields Express a periodic function in Fourier Series as a combination of sinusoidal waves of different phases and wavelengths	2
CO 3	Explain the motion of a particle in a central force field. Interpret Kepler's laws of planetary motion. Describe the concepts of scattering and differential cross-section Apply vector operators and Matrix representations	3
CO 4	Analyze scattering processes in laboratory and center-of-mass frames. Examine constraints, degrees of freedom, and D'Alembert's principle. Estimate/Calculate line and area integrations of given one-and two-dimensional simple function respectively	4
CO 5	Evaluate the limitations of Newtonian mechanics and compare it with Lagrangian and Hamiltonian formulations. Assess the impact of scattering parameters on physical systems. Predict the Eigenvalues, solutions of the differential equations using various methods	5
CO 6	Formulate equations of motion using Lagrangian and Hamiltonian mechanics. Design models and computational simulations of mechanical systems. Apply Fourier series and Fourier transforms	6

Section 1: Classical Mechanics		
Unit 1	Mechanics of system of particles	6 Lectures
	 Revision of Newton's laws of motion. Applications of Newton's laws of motion to solve problems of projectile motion in resistive medium Rocket motion, Motion of a charged particle in constant electric Magnetic and electromagnetic field, Systems of particles Center of mass, conservation of linear and angular momentum, energy of system of particles Problems 	

Unit 2	Motion in Central Force Field	8 Lectures		
Omt 2	Central force, equivalent one body problem, Motion in	o Ecctures		
	central force field			
	General features of motion			
	• equation of orbit			
	Deduction of Kepler's laws of planetary motion and their			
	applications, tidal force field.			
Unit 3	Scattering of particles	8 Lectures		
	Laboratory and centre of mass system. Scattering	0 = 000000		
	Relation between scattering angles in laboratory and centre			
	of mass system.			
	Differential cross-section, impact Parameter, total			
	cross-section			
	Rutherford scattering			
	• Problems			
Unit 4	Langrangian and Hamiltonian formulation:	8 Lectures		
	Limitations of Newtonian formulation			
	• Types of constraints, degrees of freedom, generalized			
	coordinates, configuration space			
	D'Alembert's principle of virtual work			
	• Langrangian equation from D'Alembert's principle,			
	Hamilton's equations.			
Section 2: Ma	Section 2: Mathematical Methods in Physics I			
Unit 5	Vector Analysis	8 Lectures		
	Revision- Vector operators (addition, subtraction, Cross			
	product and dot product), Scalar triple product and vector			
	triple product.			
	Divergent, gradient and Curl (representations in different			
	coordinate systems).			
	Line, Surface and Volume integrals			
	• Stokes theorem, Gauss's theorem.			
Unit 6	Complex numbers	8 Lectures		
	Definition of complex numbers, real and imaginary parts			
	Algebraic operators (addition, subtraction, multiplication,			
	division)			
	Complex conjugate			
	Polar form			
	• Eulers' Equations			
	Roots of Unity			
	• Functions of Complex Numbers: Roots, Exponential,			
I Init 7	Logarithmic, Trigonometric.	5 Loctum		
Unit 7	Differential Equations	5 Lectures		
	Ordinary differential equation (first order, second order, linear and markingar)			
	linear and nonlinear) Portial Differential equation (Ways function and Lanlace's			
	Partial Differential equation (Wave function and Laplace's equation)			
	equation)Methods of Solutions (separation of variables, integrating			
	factor, power series)			
Unit 8	Fourier Series	9 Lectures		
Onito	1 outlot octios	7 Lectures		

- Fourier series (periodic function, series representation and fourier constants)
- Complex fourier Series
- Fourier transform (continuous function and properties linearity, time-shift invariance, frequency-shift invariance, convolution theorem, and Parseval's theorem)

- 14. Classical Mechanics, J.C. Upadhyaya, Himalaya publishing Houses, 2nd Edition of 2005.
- 15. Introduction to Classical Mechanics, R. G. Takawale, P. S. Puranik, Tata McGraw Hill publishing Company Ltd., New Delhi.
- 16. Classical Mechanics, NC Rana and PS Joag, Tata McGraw Hill Education Private Limited, New Delhi. 1991.
- 17. Classical Mechanics by P.V.Panat.
- 18. Classical Mechanics, Herbert Goldstein, Narosa Publishing House.
- 19. Mathematical methods for physicists, Arfken and Weber, Acadmic Press Newyork.
- 20. Mathematical methods in the physical sciences Marry L. Boas, John Willy and sons publication.
- 21. Mathematical Physics, H. K. Dass and Rama Verma, S Chand and Sons Publications.
- 22. Mathematical Physics, S.Prakash, S Chand and Sons Publications.

Progressive Education Society's Modern College of Arts, Science and Commerce, Shivajinagar, Pune - 5 Third Year of B.Sc. (2023 Course under NEP 2020)

(2023 Course under NEP 2020) Course Code: 23ScPhyU5102

Course Name: Quantum Mechanics I and Atomic and Molecular Physics

Teaching Scheme: 4 Hours/Week Credit: 04

Examination Scheme: CIA: 40 Marks End-Sem: 60 Marks

Prerequisite Courses:

• Familiarity with 10+2 level physics syllabus

Course Objectives:

- To understand Schrodinger equation and its solution for simple systems.
- To understand interpretation of the Wave function in quantum mechanics.
- To study operators in quantum mechanics and be able to calculate expectation values of observables like position, momentum, energy etc.
- To Study the composition of atoms with the help of different atomic models.
- Understand the one valence electron and two electron spectroscopy.
- To study the behaviour of spectral lines in electromagnetic fields.
- Understand the molecular spectroscopy.

Course Outcomes:

CO	Course Outcomes (COs)	Bloom's
No		Cognitive level
CO 1	Study the Schrodinger equation and its simple applications.	1
	Study different atomic models and the atomic structure	
CO 2	Understand the physical interpretation of wave function.	2
	Interpretation of different atomic and molecular spectra.	
CO 3	Apply quantum mechanics for simple 1D, 2D and 3D cases. Apply	3
	quantum mechanical principles to analyze atomic and molecular	
	systems	
CO 4	Analyze the difference between classical mechanics and similar	4
	quantum mechanical systems.	
	Analyzing the complexities of multi-electron atoms by considering	
	concepts like Pauli's Exclusion principle	
CO 5	ϵ	5
	Evaluate different energy states in one valence and two valence electron	
	systems.	
CO 6	Solve simple problems in quantum mechanics.	6
	Solve quantitative problems related to atomic and molecular systems	

Section 1: Quantum Mechanics I		
Unit 1	The Wave Function	05 Lectures
Omi i	The Schrodinger Equation	03 Lectures
	Control of the Contro	
	 Statistical Interpretation of Wave Function Ehrenfest's Theorem 	
Unit 2	Heisenberg's Uncertainty Principle Time Independent Schrodinger Equation Time Independent Independent Independent Independent Independent Independent Independent Indep	09 Lectures
Omi 2	Time-Independent Schrodinger Equation	09 Lectures
	Introduction to Stationary StatesInfinite Potential Well	
	Harmonic Oscillator The Free Posticle	
	• The Free Particle	
11 1/2	• Finite Potential Well	00.1
Unit 3	Linear Algebraic Formalism	09 Lectures
	Introduction to Hilbert Space	
	Observables in Quantum Mechanics Other Control of the Co	
	Eigenfunction of Hermitian Operator	
	Uncertainty Principle	
TT 1. 4	Vector and Operators	057
Unit 4	Quantum Mechanics in Three Dimensions	07 Lectures
	Schrodinger Equation	
	• Infinite Box	
~ •	The Hydrogen Atom	
Section 2 Atomic and Molecular Physics		I 0-7
Unit 1	Atomic structure	07 Lectures
	Thomson's and Rutherford's atomic models	
	Electron orbits	
	Bohr atomic model	
	Energy levels and spectra	
	Vector atom model (Concepts of space and spin	
	quantization)	
	Atomic excitation and atomic spectra	
Unit 2	One valence and two valence electron Systems	13 Lectures
	Pauli's Exclusion principle and electron	
	configuration, quantum states	
	Spectral notations of quantum states	
	Spin-Orbit Interaction (Concept only)	
	• Energy levels of hydrogen atom, selection rules,	
	Fine structures	
	Energy levels of sodium atom, Spectrum of sodium	
	atom, sodium Doublet	
	Spectral terms of two electron atoms, terms for	
	equivalent electrons	
	LS and JJ coupling schemes	
	• Singlet-Triplet separation for interaction energy of	
	LS coupling	
	Lande's Interval rule	
	Helium atom spectrum	

Unit 3	Spectral lines in electromagnetic field	05 Lectures
	 Early discoveries and developments Experimental arrangement of Zeeman Effect Normal and anomalous Zeeman Effect Stark effect (concept only) 	
Unit 4	Molecular Spectroscopy	05 Lectures
	 Rotational energy levels Vibrational energy levels Rotational and Vibrational spectra Electronic spectra of molecules 	

- 23. Introduction to Quantum Mechanics; 3rd Edition David J. Groffiths and Darrell F. Schroeter
- 24. Principles of Quantum Mechanics; 2nd Edition; R. Shankar
- 25. Quantum Mechanics: Theory and Applications; Ajoy Ghataka and S. Lokanathan
- 26. Sear's and Zimansky's University Physics with Modern Physics, Young and Freedman
- 27. Fundamentals of Physics, Resnick and Halliday
- 28. Quantum Physics, Eisberg and Resnick
- 29. Concept of Modern Physics, Arthur Beiser
- 30. Molecular spectroscopy, C. N. Banwell

Modern College of Arts, Science and Commerce,

Shivajinagar, Pune - 5 Third Year of B.Sc.

(2023 Course under NEP 2020)

Course Code: 23ScPhyU5103 Course Name: Lab Course on 23ScPhyU5101 and 23ScPhyU5102

Teaching Scheme: 4 Hours/Week Credit: 02

Examination Scheme: CIA: 20 Marks End-Sem: 30 Marks

Prerequisite Courses:

• Familiarity with physics courses in 10+2 level, first year B.Sc. and second year B.Sc.

• Familiarity with Basic concepts in Physics

Course Objectives:

- To gain practical knowledge by applying the experimental methods to correlate with the Physics theory.
- To learn the usage of optical systems for various measurements.
- Apply the analytical techniques and graphical analysis to the experimental data.
- To develop intellectual communication skills and discuss the basic principles of scientific concepts in a group.

Course Outcomes:

On completion of the course, student should be able to-

CO No	Course Outcomes (COs)	Bloom's Cognitive level
CO 1	Find the various procedures and techniques for the experiments related to general physics.	1
CO 2	Generalize the mathematical concepts/equations to obtain quantitative results.	2
CO 3	Integrate the basic communication skills through working in groups in performing the laboratory experiments and by interpreting the result.	3
CO 4	Correlate the technical and evaluative skills using laboratory equipment, tools, and materials.	4
CO 5	Test practical knowledge by applying the experimental methods to correlate with the Physics theory.	5

	Adapt the knowledge of mechanical, electrical and optical systems for various measurements.	6
--	---	---

Course Contents		
	 Moment of inertia by Bifilar Suspension using Hollow cylinder Moment of inertia by Bifilar Suspension 	
	using solid cylinder 3. Young's modulus by Koenig's Method 4. Surface tension of mercury by Quinke's methods 5. Surface tension of liquid by Ferguson	
	methods 6. Energy can of semiconductor (Co diodo)	
	6. Energy gap of semiconductor (Ge diode)	
	7. Planck's constant using photocell/LDR/photodiode	
	8. Calibration of constant deviation spectrometer by using mercury source	
	9. Determination of Rydberg's constant by using hydrogen discharge tube	
	10. Thermal conductivity of Rubber tube	
	11. Thermal conductivity of Graphite	
	12. Determination of resolving power of grating	
	13. Determination of refractive index of liquid using hollow prism	
	14. Determination of Hall coefficient by varying magnetic field.	
	15. Determination of Hall coefficient by varying Probe current	
	16. Resistivity by Four Probe method	
	17. Thermal conductivity by Forbe's method	
	18. e/m by Thomson's Method	
	19. Characteristics of LASER beam	
	20. Simulation of Finite Potential Well	
	21. Calculating Fourier Coefficients for Square Wave using Numerical Integration	

22. Generating Square Wave using Fourier Coefficients

- 1. Practical Physics, R.K.Shukla and Anchal Shrivastava
- 2. An Advanced course in Practical Physics, D. Chattopadhyay and P. C. Rakshit
- 3. B. Sc. Practical Physics, Harnam Singh
- 4. University Physics with Modern Physics, Sears and Zemansky
- 5. Fundamental of Physics, Halliday and Resnick
- 6. Fundamental of Optics, Francis Jenkins, Harvey White
- 7. B. Sc. Practical Physics, C.L.Arora
- 8. https://phet.colorado.edu
- 9. https://vlab.amrita.edu/

Modern College of Arts, Science and Commerce (Autonomous), Shivajinagar, Pune - 5 Third Year of B.Sc. (2023 Course under NEP 2020)

Course Code:23ScPhyU5201 Course Name: Electronics and Instrumentation(T+P)

Teaching Scheme: 2 Hours/Week Credit: 02

Examination Scheme: CIA: 20 Marks End-Sem: 30 Marks

Prerequisite Courses:

• Familiarity with 10+2 level physics syllabus

Course Objectives:

• To introduce the fundamentals of Electronics Instruments

• To gain practical knowledge in the field of electronic circuits through experiments.

Course Outcomes:

CO	Course Outcomes (COs)	Bloom's
No.		Cognitive Level
CO1	Relate electronics and instrumentation with engineering that focuses	1
	on the design, development, and application of measuring	
	instruments, control systems, and automation technologies for	
	various processes and applications	
CO2	Illustrate use of encoders, decoders, multiplexers in various circuits.	2
CO3	Identify the various parameters that are measurable in electronic	3
	instrumentation.	
CO4	Describe the working principle, selection criteria and applications of	4
	various transducers used in measurement systems.	
CO5	Explain working of flip flops, counters, and registers.	5
CO6	Design digital circuits for dedicated applications.	6

Unit 1	Semiconductor Devices	8 Lectures

	 LED and Photodiode, Optocoupler. (Working Principles) BJT: Transistor amplifier Field Effect Transistor: JFET (Introduction, classification, principle, working and IV characteristics) Problems 	
Unit 2	Applications of Semiconductor Devices	8 Lectures
	 Modulation and Demodulation: Concept of Carrier Wave, Need of Modulation and Demodulation, Methods of Modulation like AM, FM, PM (Concepts Only) Problems 	
Unit 3	Integrated Circuits	7 Lectures
	 Integrated Circuits: Introduction, Scale of Integration Advantages and drawbacks of IC OP-AMP Applications as Integrator, Differentiator, Comparator Timer IC-555: Block diagram, Astable, monostable multivibrator (working and design) Problems 	
Unit 4	Sensors	7 Lectures

- Introduction to Sensors, types of sensors: Active and Passive
- Displacement sensors classification of displacement (linear and rotary):
- Resistive type: Potentiometric linear and rotary (angular)), strain gauges- responding to dimensional changes and resistivity change namely electrical and semiconductor type.
- Capacitive type: linear and angular type, responding to change in distance,
- Inductive type: Responding to change in Mutual inductance (LVDT), Self inductance, Variable reluctance, Eddy current sensors, Magnetostriction gauge
- Hall Effect sensors for displacement measurement.
- Optical sensors: optical pyrometers (total radiation and selective radiation type)
- Temperature measurement sensors: Temperature scales, Liquid filled thermometer, Resistance type: Platinum resistance temperature sensor, and (PT 100) thermistors. Thermocouples-Seebeck effect, Peltier effect & Thompson effect, types of thermocouples: T, E, J, K, R, S, B types. With their ranges,
- Pressure sensors: Diaphragm, Bellows and Bourdon Tubes

- 1. Malvino, Electronic Principles (6th Ed.), Tata McGraw Hill, New Delhi
- 2. R. P. Jain, Modern Digital Electronics (3rd Ed.), Tata McGraw Hill, New Delhi
- 3. B. L. Theraja, Basic Electronics Solid State, S. Chand and Company, New Delhi
- 4. K. R. Botkar, Integrated Circuits, Khanna Publishers, Delhi and Dorling Kindersley Publishing, Inc.(2006)
- Rangan, Mani, Sharma, Instrument of Device System
- B. C. Nakra, K. K. Chaudhari, Instrument measurement and analysis
- Electronic Instrumentation By H.S. Kalsi, 3rd Edition McGraw Hills Education

Modern College of Arts, Science and Commerce (Autonomous), Shivajinagar, Pune - 5 Third Year of B.Sc. (2023 Course under NEP 2020) Major Electives Practical

Course Code:23ScPhyU5201 Course Name: Lab Course on Electronics and

Instrumentation

Teaching Scheme: 4 Hours/Week Credit: 02

Examination Scheme: CIA: 20 Marks End-Sem: 30 Marks

Prerequisite Courses:

• Familiarity with physics courses in 10+2 level, first year B.Sc. and second year B.Sc.

• Familiarity with Basic concepts in Physics

Course Objectives:

- To gain practical knowledge by applying the experimental methods to correlate with the Physics theory.
- To learn the usage of optical systems for various measurements.
- Apply the analytical techniques and graphical analysis to the experimental data.
- To develop intellectual communication skills and discuss the basic principles of scientific concepts in a group.

Course Outcomes:

On completion of the course, student should be able to—

CO No	Course Outcomes (COs)	Bloom's Cognitive level
CO 1	Find the various procedures and techniques for the experiments related to general physics.	1
CO 2	Generalize the mathematical concepts/equations to obtain quantitative results.	2
CO 3	Integrate the basic communication skills through working in groups in performing the laboratory experiments and by interpreting the result.	3
CO 4	Correlate the technical and evaluative skills using laboratory equipment, tools, and materials.	4

CO 5	Test practical knowledge by applying the experimental methods to correlate with the Physics theory.	5
CO 6	Adapt the knowledge of mechanical, electrical and optical systems for various measurements.	6

 Scaling circuits (MOD 2, MOD 5, MOD 10) Regulated power circuit using IC 7805 Computer interface: Chearacetristes of LEDCounters 3 expts LVDT 	
5) Instrumentational amplifiers using three Op-Amps.	
6) Self induction by Anderson's bridge	
7) Characteristics of JFET	
8) Astable multivibrator using IC 555	
9) Schmitt trigger: DC and AC operation	
10) Measurement of inductance by using Maxwell's bridge.	
11) To determine the temperature coefficients of Pt resistance thermometer	
12) Study of various Flipflops	
13) Study of Differentiator and Integrator (using op-Amp)	
14) Inverting and non-inverting amplifier using op-Amp	
15) Study of combinational circuits (encoder and decoder)	
16) Study of 4 bit DAC (R-2R ladder)	
17) Study of ADC	

18) Study of IC 7495 as shift register	
19) Study of Strain gauge	
20) Decade counter using IC 7490	
21) Op-Amp as a comparator	
22) transistor as switch	
23) Study of ON OFF controller	
24) Study of line and load regulation of standard power supply	
25) Study of optical sensors (opto-coupler)	

- 1. An Advanced course in Practical Physics, D. Chattopadhyay and P. C. Rakshit
- 2. B. Sc. Practical Physics, C.L.Arora
- 3. B. Sc. Practical Physics, Harnam Singh
- 4. University Physics with Modern Physics, Sears and Zemansky
- 5. Fundamental of Physics, Halliday and Resnick
- 6. Fundamental of Optics, Francis Jenkins, Harvey White

Progressive Education Society's Modern College of Arts, Science and Commerce (Autonomous) Shivajinagar, Pune - 5

Third Year of B.Sc. (2023 Course under NEP 2020)

Course Code: 23ScPhyU5202 Course Name: Physics of Semiconductor Devices (T+P)

Teaching Scheme: 4 Hours/Week Credit: 04

Examination Scheme: CIA: 20 Marks End-Sem: 30 Marks

Prerequisite Courses:

• Familiarity with 10+2 level physics syllabus

• Completed first year course 23ScPhyU5101

Course Objectives:

• To understand the Physics of semiconductor devices

- To be able to plot and interpret the current voltage characteristics for basic semiconductor devices
- The student should be able to understand the behaviour, characteristics and applications of

optoelectronic devices such as solar cell, LED, photodiode

Course Outcomes:

CO	Course Outcomes (COs)	Bloom's
No.		Cognitive Level
CO1	Define fundamentals of energy band theory in semiconducting materials.	1
CO2	Explain the basic of Intrinsic and Extrinsic Semiconductors	2
CO3	Identify the fundamental operation of a bipolar transistor	3
CO4	Examine the band diagram and depletion layer in PN junctions	4
CO5	Perform experiments for studying the behavior of semiconductor devices for circuit design applications	5
CO6	Elaborate the importance of doping to change carrier density	6

Unit 1	Properties of Semiconductor	7	Lecture
			S

	 Band structure of semiconductors carrier concentration at thermal equilibrium for intrinsic and doped semiconductors carrier energy distribution application of Fermi factor to semiconductors Density of available states Excess carriers Carrier transport phenomena. Mobility Resistivity Hall effect, Recombination process Basic equation for semiconductor device operation 	
Unit 2	PN Junction	8 Lecture s
	 Basic device technology, Depletion region and depletion capacitance, Current Voltage characteristics: Ideal case, Shockley Equation, Generation recombination process, High injection condition, Diffusion capacitance, Narrow base diode, Junction breakdown. 	
Unit 3	Junction Transistor & Field-Effect-Devices	7 Lectures

	Formation of transistor,	
	Basic current Voltage	
	relationship,	
	 current gain in transistor 	
	Injection efficiency,	
	 Base transport factor, 	
	Depletion layer and surface	
	recombination.	
	 Static characteristics common 	
	base and common emitter	
	configurations.	
	 Power transistor, General 	
	consideration, second	
	breakdown switching	
	transistor, unijuction transistor.	
	Schottky diode, semiconductor	
	controlled rectifier,	
	 Junction field effect transistor. 	
	Basic characteristics: static	
	characteristics and Dynamic	
	characteristics, current limiter.	
Unit 4	Metal & Metal Insulator	
I I / N I I 4	i Meiai & Meiai Insiliaior	L & Lectures
Unit 4		8 Lectures
Unit 4	Semiconductor Devices	8 Lectures
Unit 4	Semiconductor Devices • Schottky effect,	8 Lectures
Onit 4	 Semiconductor Devices Schottky effect, Energy Band relation at metal 	8 Lectures
Unit 4	Semiconductor Devices • Schottky effect,	8 Lectures
Unit 4	 Semiconductor Devices Schottky effect, Energy Band relation at metal semiconductor contact, Ideal condition and surface 	8 Lectures
Unit 4	 Semiconductor Devices Schottky effect, Energy Band relation at metal semiconductor contact, Ideal condition and surface states depletion Layer, 	8 Lectures
Unit 4	 Semiconductor Devices Schottky effect, Energy Band relation at metal semiconductor contact, Ideal condition and surface 	8 Lectures
Unit 4	 Semiconductor Devices Schottky effect, Energy Band relation at metal semiconductor contact, Ideal condition and surface states depletion Layer, General expression for barrier 	8 Lectures
Onit 4	 Semiconductor Devices Schottky effect, Energy Band relation at metal semiconductor contact, Ideal condition and surface states depletion Layer, General expression for barrier height Current Transport 	8 Lectures
Unit 4	 Semiconductor Devices Schottky effect, Energy Band relation at metal semiconductor contact, Ideal condition and surface states depletion Layer, General expression for barrier height Current Transport Theory in Schottky barrier, 	8 Lectures
Onit 4	 Semiconductor Devices Schottky effect, Energy Band relation at metal semiconductor contact, Ideal condition and surface states depletion Layer, General expression for barrier height Current Transport Theory in Schottky barrier, Thermionic Emission Theory, 	8 Lectures
Onit 4	 Semiconductor Devices Schottky effect, Energy Band relation at metal semiconductor contact, Ideal condition and surface states depletion Layer, General expression for barrier height Current Transport Theory in Schottky barrier, Thermionic Emission Theory, Diffusion theory. 	8 Lectures
Onit 4	 Semiconductor Devices Schottky effect, Energy Band relation at metal semiconductor contact, Ideal condition and surface states depletion Layer, General expression for barrier height Current Transport Theory in Schottky barrier, Thermionic Emission Theory, Diffusion theory. Measurement of Schottky 	8 Lectures
Onit 4	 Semiconductor Devices Schottky effect, Energy Band relation at metal semiconductor contact, Ideal condition and surface states depletion Layer, General expression for barrier height Current Transport Theory in Schottky barrier, Thermionic Emission Theory, Diffusion theory. Measurement of Schottky barrier height current voltage 	8 Lectures
Onit 4	 Semiconductor Devices Schottky effect, Energy Band relation at metal semiconductor contact, Ideal condition and surface states depletion Layer, General expression for barrier height Current Transport Theory in Schottky barrier, Thermionic Emission Theory, Diffusion theory. Measurement of Schottky barrier height current voltage measurement, 	8 Lectures
Onit 4	 Semiconductor Devices Schottky effect, Energy Band relation at metal semiconductor contact, Ideal condition and surface states depletion Layer, General expression for barrier height Current Transport Theory in Schottky barrier, Thermionic Emission Theory, Diffusion theory. Measurement of Schottky barrier height current voltage measurement, Forward characteristics. 	8 Lectures
Onit 4	 Semiconductor Devices Schottky effect, Energy Band relation at metal semiconductor contact, Ideal condition and surface states depletion Layer, General expression for barrier height Current Transport Theory in Schottky barrier, Thermionic Emission Theory, Diffusion theory. Measurement of Schottky barrier height current voltage measurement, Forward characteristics, metal 	8 Lectures
	 Semiconductor Devices Schottky effect, Energy Band relation at metal semiconductor contact, Ideal condition and surface states depletion Layer, General expression for barrier height Current Transport Theory in Schottky barrier, Thermionic Emission Theory, Diffusion theory. Measurement of Schottky barrier height current voltage measurement, Forward characteristics. Reverse characteristics, metal semiconductor IMPATT Diode. 	8 Lectures
	 Semiconductor Devices Schottky effect, Energy Band relation at metal semiconductor contact, Ideal condition and surface states depletion Layer, General expression for barrier height Current Transport Theory in Schottky barrier, Thermionic Emission Theory, Diffusion theory. Measurement of Schottky barrier height current voltage measurement, Forward characteristics. Reverse characteristics, metal semiconductor IMPATT Diode. Ideal MIS diode, surface states, surface charges and space charges, Effects of metal work 	8 Lectures
	 Semiconductor Devices Schottky effect, Energy Band relation at metal semiconductor contact, Ideal condition and surface states depletion Layer, General expression for barrier height Current Transport Theory in Schottky barrier, Thermionic Emission Theory, Diffusion theory. Measurement of Schottky barrier height current voltage measurement, Forward characteristics. Reverse characteristics, metal semiconductor IMPATT Diode. Ideal MIS diode, surface states, surface charges and space 	8 Lectures

- 1. Physics of Semiconductor Devices S.M. Sze
- 2. Physics Solid State Devices Streetman B.B.
- 3. Semiconductor Physics Smith
- 4. Fundamentals of Semiconductor Devices J. Lindmayer and C.Y. Wrigley
- 5. Physics of Semiconductor Devices Michael shur
- 6. Introduction to Semiconductor devices K.J.M. Rao
- 7. Jacob Millman and Christos Halkias: Electronic Devices and Circuits, Tata McGrawHill Edition

Modern College of Arts, Science and Commerce (Autonomous)

Shivajinagar, Pune - 5 Third Year of B.Sc.

(2023 Course under NEP 2020) (Major Elective Practical)

Course Code: 23ScPhyU5202 Course Name: Lab Course on Physics of Semiconductor Devices

Teaching Scheme: 4 Hours/Week Credit: 02

Examination Scheme: CIA: 20 Marks End-Sem: 30 Marks

Prerequisite Courses:

• Familiarity with 10+2 level physics syllabus

• Completed first year course 23ScPhyU5101

Course Objectives:

• To understand the Physics of semiconductor devices

- To be able to plot and interpret the current voltage characteristics for basic semiconductor devices
- The student should be able to understand the behaviour, characteristics and applications of

optoelectronic devices such as solar cell, LED, photodiode

Course Outcomes:

CO	Course Outcomes (COs)	Bloom's
No.		Cognitive Level
CO1	Define fundamentals of energy band theory in semiconducting	1
	materials.	
CO2	Explain the basic of Intrinsic and Extrinsic Semiconductors	2
CO3	Identify the fundamental operation of a bipolar transistor	3
CO4	Examine the band diagram and depletion layer in PN junctions	4
CO5	Perform experiments for studying the behavior of semiconductor	5
	devices for circuit design applications	
CO6	Elaborate the importance of doping to change carrier density	6

Progressive Education Society's Modern College of Arts, Science and Commerce, Shivajinagar, Pune - 5

T.Y.B.Sc. Physics (2023 Course under NEP 2020)

Course Code: 23ScPhyU5301 Course Name: Physics Minor III (Thermodynamics)(T+P)

Teaching Scheme: TH: 2 Hours/Week
Examination Scheme: CIA: 20 Marks

Credit: 02
ESE: 30 Marks

Prerequisite Courses:

• Familiarity with 10+2 level physics syllabus

Course Objectives:

• To introduce students to concepts of Thermal Physics.

• To study the laws of thermodynamics and thermodynamics processes.

• To study Thermal Properties of Matter.

Successful completion of this course students will able to:

CO No	Course Outcomes (COs)	Blooms Cognitive level
CO 1	Defining laws of thermodynamics and thermodynamics processes.	1
CO 2	Understanding the concepts of work done for different thermodynamics processes.	2
CO 3	Examining Otto cycle and Diesel cycle.	3
CO 4	Explaining principle construction and working off thermometers.	4
CO 5	Evaluating T-dS equations and Clausius- Clapeyron latent heat equations.	5
CO 6	Adapting the knowledge of Carnot's cycle.	6

Unit 1	Temperature and Heat	7 Lectures
	 Temperature and Thermal Equilibrium Thermometers and Temperature Scales Gas Thermometers and Kelvin Scale Thermal Expansion Quantity of Heat Calorimetry and Phase changes Mechanism of Heat Transfer 	
Unit 2	Thermal Properties of Matter	7 Lectures
	 Equations of State Molecular Properties of Matter Kinetic-Molecular Model of an Ideal Gas Heat Capacities Molecular Speeds Phases of Matter 	
Unit 3	The First Law of Thermodynamics	8 Lectures
	 Thermodynamic Systems Work Done During Volume Changes Paths Between Thermodynamic States Internal Energy and the First Law of Thermodynamics Kinds of Thermodynamic Processes Internal Energy of an Ideal Gas Heat Capacities of an Ideal Gas Adiabatic Processes for an Ideal Gas 	
Unit 4	The Second Law of Thermodynamics	8 Lectures
	 Directions of Thermodynamic Processes Heat Engines Internal-Combustion Engines Refrigerators The Second Law of Thermodynamics The Carnot Cycle Entropy Microscopic Interpretation of Entropy 	

- 1. Sear's and Zimansky's University Physics with Modern Physics, Young and Freedman 2. Fundamentals of Physics, Resnick and Halliday

Progressive Education Society's Modern College of Arts, Science and Commerce, Shivajinagar, Pune - 5

T.Y.B.Sc. Physics (2023 Course under NEP 2020)

Course Code: 23ScPhyU5301 Course Name: Lab Course on Physics Minor III

Teaching Scheme: TH: 4 Hours/Week
Examination Scheme: CIA: 20 Marks

Credit: 02
ESE: 30 Marks

Prerequisite Courses:

• Familiarity with 10+2 level physics syllabus

Course Objectives:

- To introduce students to concepts of Thermal Physics.
- To study the laws of thermodynamics and thermodynamics processes.
- To study Thermal Properties of Matter.

Successful completion of this course students will able to:

Any 6

- 1) Study of different types of thermometers
- 2) Thermal Conductivity by using Lee's method (rubber)
- 3) Thermal Conductivity by using Lee's method (plywood/cardboard sheet/acrylic)
- 4) Study of Thermistor Temperature Coefficient of Resistance
- 5) Study of Thermocouple
- 6) Temperature coefficient of Platinum resistance thermometer
- 7) Thermal conductivity of steel by Forbes Method
- 8) Thermal Conductivity of rubber Tube
- 9) Specific heat of water
- 10) J by calorimeter
- 11) Newton's law of cooling
- 12) Determination of Stefan's constant
- 13) Verification of Wein's displacement law
- 14) Determination of specific and latent heat of water

Any 6

- 15) Characteristics of a Diode
- 16) Study of Logic gates
- 17) Verification of De-Morgan's theorem
- 18) Construction of AND, OR, NOT gates using NAND gates
- 19) Construction of AND, OR, NOT gates using NOR gates
- 20) Ex-OR using AND, OR and NOT gates

21) Binary half adder

Any 4

22) Virtual lab: Capacitor lab 23) Virtual lab: Ohm's law

24) Virtual lab: Resistance in wire

25) Virtual lab: Ideal gas law Virtual lab: Kinematic equation

- 1. An Advanced course in Practical Physics, D. Chattopadhyay and P. C. Rakshit
- 2. B. Sc. Practical Physics, C.L.Arora
- 3. B. Sc. Practical Physics, Harnam Singh
- 4. University Physics with Modern Physics, Sears and Zemansky
- 5. Fundamental of Physics, Halliday and Resnick
- 6. Fundamental of Optics, Francis Jenkins, Harvey White

Progressive Education Society's Modern College of Arts, Science and Commerce, Shivajinagar, Pune - 5

Third Year of B.Sc. (2023 Course under NEP 2020)

Course Code: 23ScPhyU5501 Course Name: Experimental Techniques in Physics

Teaching Scheme: 4 Hours/Week Credit: 02

Examination Scheme: CIA: 20 Marks End-Sem: 30 Marks

Prerequisite Courses:

• Familiarity with physics courses in 10+2 level, first year B.Sc. and second year B.Sc.

• Familiarity with Basic concepts in Physics

Course Objectives:

- To gain practical knowledge by applying the experimental methods to correlate with the Physics theory.
- To learn the usage of optical systems for various measurements.
- Apply the analytical techniques and graphical analysis to the experimental data.
- To develop intellectual communication skills and discuss the basic principles of scientific concepts in a group.

Course Outcomes:

On completion of the course, student should be able to—

CO No	Course Outcomes (COs)	Bloom's Cognitive level
CO 1	Find the various procedures and techniques for the experiments related to general physics.	1
CO 2	Generalize the mathematical concepts/equations to obtain quantitative results.	2
CO 3	Integrate the basic communication skills through working in groups in performing the laboratory experiments and by interpreting the result.	3
CO 4	Correlate the technical and evaluative skills using laboratory equipment, tools, and materials.	4
CO 5	Test practical knowledge by applying the experimental methods to correlate with the Physics theory.	5

CO 6 Adapt the knowledge of mechanical, electrical and optical systems for various measurements.	6
--	---

Experimental Techniques in Physics	
1 Elasticity	
2 Acceleration due to gravity	
3 Surface Tension	
4 Sound	
5 The mechanical equivalent of Heat	
6 Thermoelectric Effect	
7 Refraction and Dispersion of Light	
8 Interference of Light	
9 Diffraction of Light	
10 Polarization of Light	
11 Resolving Power	

- 1. An Advanced course in Practical Physics, D. Chattopadhyay and P. C. Rakshit
- 2. B. Sc. Practical Physics, C.L.Arora
- 3. B. Sc. Practical Physics, Harnam Singh
- 4. University Physics with Modern Physics, Sears and Zemansky
- 5. Fundamental of Physics, Halliday and Resnick
- 6. Fundamental of Optics, Francis Jenkins, Harvey White

Modern College of Arts, Science and Commerce, Autonomous Shivajinagar, Pune - 5 Third Year of B.Sc. (2023 Course under NEP 2020)

Course Code:23ScPhyU5002 Course Name: Field Project II

Teaching Scheme: 2 Hours/Week Credit: 02

Examination Scheme: CIA: 20 Marks End-Sem: 30 Marks

Prerequisite Courses:

• Familiarity with 10+2 level physics syllabus

Modern College of Arts, Science and Commerce, Autonomous Shivajinagar, Pune - 5 Third Year of B.Sc. (2023 Course under NEP 2020)

Course Code:23ScPhyU6101 Course Name: Electrodynamic and Statistical

Mechanics

Teaching Scheme: 4 Hours/Week Credit: 04

Examination Scheme: CIA: 40 Marks End-Sem: 60 Marks

Prerequisite Courses:

• Familiarity with 10+2 level physics syllabus

- Completed first year course 23ScPhyU2101
- Topics covered in 23ScPhyU4101

Course Objectives:

- To understand the fundamental concepts of electrostatics, magnetostatics, and electrodynamics.
 - To study thermodynamics of particles from statistical point of view
- To solve boundary value problems using Poisson's and Laplace's equations.
 - To study Binomial and Gaussian probability distributions
- To analyze the behavior of dielectric and magnetic materials in the presence of electric and magnetic fields.
 - To study Binomial and Gaussian probability distributions
- To study Maxwell's equations and their applications to electromagnetic wave propagation.
 To study statistical ensembles
- To develop problem-solving skills in classical electrodynamics and its applications. To study quantum statistics

Course Outcomes:

CO	Course Outcomes (COs)	Bloom's
No.		Cognitive Level
CO1	Define the fundamental laws of electrostatics, magnetostatics, and	1
	electrodynamics, including Coulomb's law, Gauss's law, and Faraday's	
	law.	

	Define different concepts and applications of statistical mechanics in physics.	
CO2	Explain the physical significance of Maxwell's equations and their role in describing electromagnetic phenomena. Understand throttling process.	2
CO3	Apply boundary conditions, Poisson's and Laplace's equations and the method of image charges to solve electrostatic problems. Examine Binomial and Gaussian probability distributions. Distinguish Maxwell-Boltzmann, Fermi-Dirac, Bose-Einstein statistics.	3
CO4	Analyze the behavior of electromagnetic waves in different media, including reflection, refraction, and polarization effects. Review the basic knowledge of thermodynamic systems.	4
CO5	Evaluate the concepts of electromagnetic energy, Poynting theorem, and wave propagation in free space and dielectric materials.	5
CO6	Develop mathematical models and computational approaches to solve real-world electrodynamics problems. Solve the problems based on the statistical mechanics and thermodynamics.	6

Unit 1	Electrostatics	10 Lectures
	 Revision - Coulomb's law, Gauss law, Electric field, Electrostatic Potential, Potential energy of the system of charges Statement of Poisson's equation, Boundary Value problems electrostatics-solution of Laplace equation in Cartesian system Method of image charges: Point charge near an infinite grounded conducting plane, Point charge near grounded conducting sphere Electric Polarization and Displacement vector, Electric susceptibility and dielectric constant, bound volume and surface charge densities Problems 	To Beetines
Unit 2	Magnetostatics	10 Lectures
	 Revision - Magnetic induction, magnetic flux and magnetic field,, Application of Biot Savart's law and Ampere's circuital law, Energy density in magnetic field, magnetization of matter, Relationship between B, H and M Equation of continuity, Magnetic vector potential Magnetic susceptibility and permeability, Hysteresis loss, B-H curve Problems 	
Unit 3	Electrodynamics	10 Lectures
	• Concept of electromagnetic induction, Faraday's law of induction, Lenz's law, displacement	

	current,generalization of Amperes' law	
	• Maxwell's equations (Differential and Integral form) and	
	their physical significance	
	• Poynting theorem & Poynting vector, Polarizations of	
	plane waves.	
	• Microscopic form of ohm's law(J=σ. E)	
	Introduction to Special theory of Relativity	
	Problems	
Unit 4	Kinetic Theory of Gases	5 Lectures
	Revision- Assumptions of kinetic theory of gases	
	Mean free path	
	• Transport phenomena- Viscosity, Thermal conductivity,	
	Diffusion	
	• Problems	
Unit 5	Maxwell Relations and Applications	5 Lectures
	• Thermodynamical functions: Internal energy, Enthalpy,	
	Helmholtz function, Gibbs function	
	Maxwell Thermodynamical relations	
	• First and Second TdS equations	
	Specific heat	
	• Latent heat equations	
	Joule-Thomson effect (Throttling process)	
Unit 6	Elementary Concepts of Statistics	5 Lectures
	Probability	
	Distribution functions	
	Random walk and binomial	
	distribution	
	• Simple random walk problem	
	Calculation of mean values	
	Probability distribution for large scale N	
	Gaussian probability distribution.	
	• Problems	
Unit 7	Statistical Distribution of System of Particles	5 Lectures
	Specification of state of system	
	Statistical ensembles	
	Basic postulates	
	Probability calculations	
	Behavior of density of states	
	Thermal Interactions	
	Mechanical Interactions	
Unit 8	Statistical Ensembles	5 Lectures
	Micro-canonical ensemble (Isolated system)	
	Canonical ensembles	
	Simple application of canonical ensembles	
	Calculation of mean values in canonical ensemble	
Unit 9	Quantum Statistics	5 Lectures
	Quantum Distribution Function	
	Maxwell-Boltzmann's statistics	
	Bose-Einstein Statistics	
	Fermi-Dirac Statistics	

• Comparison of the distributions

- 1. Introduction to Electrodynamics; D. J. Griffith; Cambridge India; Fourth edition (2020)
- 2. Classical Electrodynamics; J. D. Jackson; Wiley; Third edition (2007)
- 3. Introduction to Electrodynamics; A. Z. Capri, Panat P. V.; Alpha science international ltd; Illustrated edition(2002)
- 4. Foundations of electromagnetic theory; Reitz, Milford and Christy; Pearson education India; Fourth edition (2010)
- 5. Electrodynamics; Gupta, Kumar, Singh; Pragati Prakashan; Ninteenth edition (2011)
- 6. Electromagnetic field and waves; Paul-Lorrain, D. R. Corson; W.H. Freeman & co. Ltd; Second edition (1970)
- 7. Electricity and magnetism; Murugeshan; S. Chand; (2020)
- 8. Electromagnetic theory and electrodynamics; Satya Prakash; Kedar Nath Ram Nath; (2020)

Progressive Education Society's Modern College of Arts, Science and Commerce (Autonomous) Shivajinagar, Pune - 5 Third Year of B.Sc. (2023 Course under NEP 2020)

Course Code: 23ScPhyU6102 Course Name: Solid-State Physics and Nuclear Physics

Teaching Scheme: 4 Hours/Week Credit: 04

Examination Scheme: CIA: 40 Marks End-Sem:60 Marks

Prerequisite Courses:

• Familiarity with 10+2 level physics syllabus

Course Objectives:

- To impart knowledge about basic nuclear physics properties and nuclear models for understanding of related reaction dynamics.
- To gain a comprehensive understanding of the structure, properties, and behavior of atomic nuclei, including their constituent particles, the forces that bind them together, and the various nuclear reactions that can occur, including radioactive decay, fission, and fusion.
- To introduce students to the fundamental principles of crystalline structures and X-ray diffraction.
- To understand free electron theory and band theory of metals for explaining electrical conductivity.
- To study different types of magnetism and their theoretical foundations.
- To develop problem-solving skills in solid-state physics using theoretical models.

Course Outcomes:

CO	Course Outcomes (COs)	Bloom's
No.		Cognitive Level
CO1	Define and describe basic properties of the nucleus.	1
	Recall fundamental concepts of crystal structures, including lattices,	
	unit cells, symmetry, and Miller indices.	
CO2	Explain the concept of radioactivity. Classify different radiation	2
	detectors and nuclear models	
	Explain Bragg's law, reciprocal lattice properties, and X-ray diffraction principles	
CO3	Solve problems related to nuclear and particle physics.	3
	Apply free electron theory and band theory to classify solids into	
	conductors, semiconductors, and insulators.	
CO4	Analyze nuclear reaction dynamics, nuclear reactors and	4
	accelerators.	
	Analyze the Hall Effect, density of states, and Fermi energy to	
	interpret electronic properties of materials.	
CO5	Interpret the nuclear changes or processes including fission, fusion	5
	and decay reactions.	
	Evaluate different magnetic phenomena, including diamagnetism,	
	paramagnetism, and ferromagnetism, using Langevin and domain	
	theories.	
CO6	Compile knowledge of elementary particles to understand nuclear	6
	phenomena.	
	Formulate models for superconductivity, magnetic properties, and	
	their applications in modern technology.	

Section 1- Solid-State Physics		
Unit 1	The Crystalline Structures and X ray Diffraction	8 Lectures

Unit 2	 Lattice, Basis, Translational Vectors, Primitive Unit Cell, Symmetry Operations Different types of lattices: 2D and 3D (Bravais lattices) Miller indices, Interplanar Distances, SC, BCC and FCC structures Packing Fraction Crystal structures NaCl, diamond, CsCl, ZnS, HCP Concept of Reciprocal Lattice and its properties Problems X ray Diffraction 	6 Lectures
	 Bragg's Diffraction, Bragg's Law X-ray diffractometer Experimental X-ray diffraction Methods: The Laue Method, The Powder Crystal Method, Analysis of cubic structure by Powder Method, Ewald's Construction Bragg's Diffraction condition in direct and reciprocal lattice, Problems 	
Unit 3	Free Electron and Band Theory of Metals	8 Lectures
	 Assumptions of Classical and Sommerfeld Free Electron model Energy levels and Density of States (One and Three Dimensions) Nearly free electron model Fermi energy, Fermi level Hall Effect, Mobility, Hall Angle Band Theory of Solids: Origin of energy gap Energy bands in Solids, Distinction between metal, semiconductor and insulator Problems 	
Unit 4	Magnetism	8 Lectures

	 Revision of B, H, M, magnetic susceptibility and permeability Diamagnetism Langevin theory of Diamagnetism Superconductivity concept, Occurrence of Superconductivity Critical magnetic field and Meissner effect Paramagnetism Langevin theory of Paramagnetism Ferromagnetic domain Hysteresis Curie temperature Ferrites and its applications Antiferromagnetism, Neel temperature Problem 	
Section 2- Nuclear Physics		
Unit 1	Basic Properties of Nucleus	6 Lectures
	 Composition, charge, size, density of nucleus, Nuclear Angular momentum, Nuclear magnetic dipole moment, Electric quadrupole moment, parity and symmetry, classification of nuclei, Mass defect and Binding energy, packing fraction, Stability of nuclei (N vs Z curve). Problems 	
Unit 2	Radioactivity	6 Lectures
	 Radioactivity disintegration (concept of natural and artificial radioactivity, Properties of α, β, γ-rays Laws of radioactive decay, half-life, mean life, Specific activity and its units Successive disintegration and equilibriums and radioisotopes Radiocarbon dating Application of radioactivity (Agricultural, Medical, Industrial, Archaeological) Problems 	

Unit 3	Particle Accelerator and Radiation Detectors	6 Lectures
	 Introduction and Classification Linear Accelerator (electron/proton LINAC) Cyclic Accelerator (Cyclotron) Particle Accelerators In India (Discussion only) Classification of Nuclear Detectors Gas filled Detectors (G. M. counter) Solid state detectors (scintillation counter) Problems 	
Unit 4	Nuclear forces and Nuclear Models	6 Lectures
	 Meson theory of nuclear forces, Properties Of nuclear forces, properties of deuteron system, Elementary particles, Quarks model for elementary particles Shell Model: Assumptions, Evidences, and Spin and Parity limitations. Liquid drop model: Assumptions Semi-empirical B.E. formula Problems 	
Unit 5	Nuclear forces and Nuclear Models	6 Lectures

•	Nuclear Reaction,	
	Conservation laws	

- The Q-value equation, Exothermic and Endothermic reaction
- Compound nucleus
- Threshold energy
- Nuclear cross-section
- Nuclear fission, nuclear fusion stellar energy, chain reaction and critical mass.
- Nuclear reactor and its basic components, homogeneous and heterogeneous reactors, power reactor, fast breeders
- Nuclear Reactors In India (Discussion only)
- Problems.

- 1. Dr. S. N. Ghoshal, Nuclear Physics, Revised Edition, S. Chand Publication, 2014
- D. C. Tayal, Nuclear Physics, Revised Enlarged Edition, Himalaya Publishing House
- K.S. Krane, Introductory Nuclear Physics, Wiley, India, 1988
- B. L. Cohen, Concepts of Nuclear Physics, Tata McGraw Hill
- I. Kaplan, Nuclear Physics, 2nd Edition, Narosa, New Delhi, 1989
- S.B. Patel, Nuclear Physics: An Introduction, New Age International, 1991
- Solid State Physics S.O.Pillai, 6th Edition, New Age International (P) Ltd, Publisher, (2010).
- Solid State Physics Kakani S.L. and Hemrajani C, 4th Edition, S. Chand Publication (2005).
- Fundamentals of Solid State Physics B.S.Saxena, R.C.Gupta and P.N.Saxena, Pragati Prakashan, Meerut, Uttar Pradesh
- Introduction to Solid State Physics- Charles Kittel, John Wiley and Sons, 7th Edition.
- Solid State Physics- A.J.Dekker, Macmillan India Ltd, (1998).
- Solid State Physics- R.K. Puri, V.K. Babbar, S. Chand Publication.
- Elementary Solid State Physics Principles and Applications, M Ali Omar, Pearson Education, Inc. and Dorling Kindersley Publishing, Inc.(2006)
- Problems and Solution in Solid State Physics-S.O. Pillai, New Age International (P) Ltd.
- Solid State Physics, P.K. Palanisamy, Scitech Publications(India) Pvt Ltd, Chennei, 1st Edition (2004)
- Solid State Physics: Essential Concepts, David W. Snoke, 2nd Edition, Cambridge University Press

Progressive Education Society's Modern College of Arts, Science and Commerce,

Shivajinagar, Pune - 5 Third Year of B.Sc.

(2023 Course under NEP 2020)

Course Code: 23ScPhyU6103 Course Name: Lab Course on 23ScPhyU6101 and 23ScPhyU6102

Teaching Scheme: 4 Hours/Week Credit: 02

Examination Scheme: CIA: 20 Marks End-Sem: 30 Marks

Prerequisite Courses:

• Familiarity with physics courses in 10+2 level, first year B.Sc. and second year B.Sc.

• Familiarity with Basic concepts in Physics

Course Objectives:

- To gain practical knowledge by applying the experimental methods to correlate with the Physics theory.
- To learn the usage of optical systems for various measurements.
- Apply the analytical techniques and graphical analysis to the experimental data.
- To develop intellectual communication skills and discuss the basic principles of scientific concepts in a group.

Course Outcomes:

On completion of the course, student should be able to-

CO No	Course Outcomes (COs)	Bloom's Cognitive level
CO 1	Find the various procedures and techniques for the experiments related to general physics.	1
CO 2	Generalize the mathematical concepts/equations to obtain quantitative results.	2
CO 3	Integrate the basic communication skills through working in groups in performing the laboratory experiments and by interpreting the result.	3
CO 4	Correlate the technical and evaluative skills using laboratory equipment, tools, and materials.	4
CO 5	Test practical knowledge by applying the experimental methods to correlate with the Physics theory.	5

	Adapt the knowledge of mechanical, electrical and optical systems for various measurements.	6
--	---	---

Content

1) Characteristics of GM Counter	
2) GM Counter- Counting Statistics	
3) GM Counter- End point energy	
4) Virtual lab-Nuclear Physics	
5) Determination of Hall carrier concentration by varying magnetic	
field.	
6) Determination of carrier concentration by varying Probe current	
7) Resistivity of a semiconductor using Four probe method	
8) Directional characteristics of Yagi Antennas	
9) Directional characteristics of Parabolic Antennas	
10) Directional characteristics of Dipole antenna	
11) Magnetic susceptibility of a material by Guoy's method	
12) Magnetic susceptibility of a material of FeCl ₃	
13) e/m ratio by Thomson's method	
14) Pin diode	
15) Magnetic properties of material using hysteresis loop	
16) Simulation of random walk	

- 1. An Advanced course in Practical Physics, D. Chattopadhyay and P. C. Rakshit
- 2. B. Sc. Practical Physics, C.L.Arora
- 3. B. Sc. Practical Physics, Harnam Singh
- 4. University Physics with Modern Physics, Sears and Zemansky
- 5. Fundamental of Physics, Halliday and Resnick
- 6. Fundamental of Optics, Francis Jenkins, Harvey White

Progressive Education Society's Modern College of Arts, Science and Commerce, Shivajinagar (Autonomous), Pune - 411005

T.Y.B.Sc. Physics (2023 Course under NEP 2020)

Course Code: 23ScPhyU6201 Course Name: Material Science and Physics of Nanomaterials (T+P)

Teaching Scheme: TH: 2 Hours/Week
Examination Scheme: CIA: 20 Marks

Credit: 02
ESE: 30 Marks

Prerequisite Courses:

- Familiarity with 10+2 level physics syllabus and basic concepts of solid-state physics
- Completed first year course 23ScPhyU1101 & 23ScPhyU4101

Course objective

- To develop a foundational understanding of material properties and the defects in solids, alongside the mechanisms and principles of atomic diffusion.
- To enable students to analyze and interpret phase diagrams, applying fundamental principles such as the Gibbs phase rule and lever rule to real-world systems.
- To introduce the concepts, significance, and challenges of nanomaterials, emphasizing their properties and classifications.
- To acquaint students with diverse methods for synthesizing nanomaterials, including physical, chemical, hybrid, and biological approaches.
- To provide basic knowledge of advanced techniques for characterizing material properties, such as spectroscopy and various electron microscopy methods.

Successful completion of this course students will able to:

CO NO.	Course Outcomes (COs)	Bloom's Cognitive level
CO 1	Identify and recall the classification of materials, their properties (mechanical, electrical, and thermal), and common defects in solids (point, line, surface, and volume).	1
CO 2	Explain the significance of Gibb's phase rule, the phase diagrams of solutions like sugar-water and NaCl-water, and concepts such as solid solubility and imperfections in crystals.	2
CO 3	Demonstrate the application of Fick's laws of diffusion in practical scenarios and utilize lever rule for calculating the phase fractions in multi-phase systems.	3
CO 4	Distinguish between the methods of nanomaterial synthesis (e.g., physical, chemical, hybrid, and biological methods) and evaluate their advantages and limitations.	4
CO 5	Assess the challenges and significance of nanotechnology by critically analyzing properties of nanostructured materials and their applications.	5
CO 6	Develop a comprehensive approach for characterizing nanomaterials using techniques like UV-visible spectroscopy, X-ray diffraction, and electron microscopy, integrating insights.	6

Unit 1	Defects in Solids and Diffusion	6 Lectures
	Classification of Materials	
	Material Properties – Mechanical, Electrical and The arms 1.	
	Thermal	
	Impurities in solidsSolid solutions in metals	
	 Solid solutions in metals Rules of solid solubility 	
	 Rules of solid solidolity Imperfection in crystals 	
	 Defects in solids - point, line, surface and volume 	
	Atomic diffusion: Definition, mechanism, Fick's laws	
Unit 2	Phase Diagrams	6 Lectures
	Basic terms System, Surrounding, Component,	
	Coordinates, Phase, Equilibrium.	
	Phase Diagram - definition, importance and objective	
	• Lever rule	
	 Gibb's phase rule 	
	 Phase diagram of a) Sugar water b) NaCl water 	
	 Types of phase diagrams with construction 	
	Isothermal cuts	
Unit 3	Introduction to Nanomaterials	4 Lectures
	 Introduction to nano-sized materials and structures 	
	Brief history of nanomaterials	
	Challenges in nanotechnology	
	 Significance of nano-size and properties 	

	Classification of nanostructured materials	
Unit 4	Methods of Synthesis of Nanomaterials	7 Lectures
	 Bottom-up and Top-down approaches Physical methods: High energy ball milling, Physical vapour deposition, Ionized cluster beam deposition, Sputter deposition, Ultrasonic spray pyrolysis Chemical methods: colloidal method, co-precipitation, sol-gel method Hybrid method: Electrochemical and chemical vapour deposition. 	
Unit 5	Characterization Techniques	7 Lectures
	 UV- visible spectroscopy FTIR spectroscopy X-ray diffraction Scanning electron microscopy Transmission electron microscopy Scanning tunneling microscopy X-ray and UV photoelectron spectroscopy 	

- 1) Elements of materials science and Engineering I. H. Van Vlack (4th Edition)
- 2) Materials science and Engineering V. Raghavan
- 3) Solid state physics S. O. Pillai
- 4) Material Science and Engineering W. D. Callister
- 5) Nanotechnology: Principles & Practices. Sulbha K. Kulkarni, Capital Pub.
- 6) Nanostructures & Nanomaterials Synthesis, Properties & Applications. Guozhong Cao, Imperial college Press London.
- 7) Introduction to Nanotechnology. C. P. Poole Jr. & F. J. Owens, Wiley Student Ed.
- 8) Nano: The Essentials. T. Pradeep, McGraw Hill Education.
- 9) Nanomaterials: Synthesis, Properties & Applications. Edited by A. S. Edelstein & R. C. Commorata. Institute of Physics Publishing, Bristol & Philadelphia

Progressive Education Society's Modern College of Arts, Science and Commerce, Shivajinagar (Autonomous), Pune - 411005

T.Y.B.Sc. Physics (2023 Course under NEP 2020)

Course Code: 23ScPhyU6201 Course Name: Lab Course on Material Science and Physics of Nanomaterials

Teaching Scheme: TH: 4 Hours/Week
Examination Scheme: CIA: 20 Marks

Credit: 02
ESE: 30 Marks

Prerequisite Courses:

- Familiarity with 10+2 level physics syllabus and basic concepts of solid-state physics
- Completed first year course 23ScPhyU1101 & 23ScPhyU4101

Course objective

- To develop a foundational understanding of material properties and the defects in solids, alongside the mechanisms and principles of atomic diffusion.
- To enable students to analyze and interpret phase diagrams, applying fundamental principles such as the Gibbs phase rule and lever rule to real-world systems.
- To introduce the concepts, significance, and challenges of nanomaterials, emphasizing their properties and classifications.
- To acquaint students with diverse methods for synthesizing nanomaterials, including physical, chemical, hybrid, and biological approaches.
- To provide basic knowledge of advanced techniques for characterizing material properties, such as spectroscopy and various electron microscopy methods.

Successful completion of this course students will able to:

CO NO.	Course Outcomes (COs)	Bloom's Cognitive level
CO 1	Identify and recall the classification of materials, their properties (mechanical, electrical, and thermal), and common defects in solids (point, line, surface, and volume).	1
CO 2	Explain the significance of Gibb's phase rule, the phase diagrams of solutions like sugar-water and NaCl-water, and concepts such as solid solubility and imperfections in crystals.	2
CO 3	Demonstrate the application of Fick's laws of diffusion in practical scenarios and utilize lever rule for calculating the phase fractions in multi-phase systems.	3
CO 4	Distinguish between the methods of nanomaterial synthesis (e.g., physical, chemical, hybrid, and biological methods) and evaluate their advantages and limitations.	4
CO 5	Assess the challenges and significance of nanotechnology by critically analyzing properties of nanostructured materials and their applications.	5
CO 6	Develop a comprehensive approach for characterizing nanomaterials using techniques like UV-visible spectroscopy, X-ray diffraction, and electron microscopy, integrating insights.	6

Determination of crystal structure using XRD data
2) Determination of crystallite size of nanoparticles using
XRD data
3) Determination of a band gap using UV-Visible spectra
4) Synthesis of nanomaterials using Chemical bath
deposition
5) Yield point and breaking point of a (eutectic material)
wire
6) Synthesis of nanomaterials using Chemical route method
7) Analysis of SEM images using imageJ software
8) Deposition of ZnO thin film using Spin coater.
9) Study of FTIR
10) Study of UV-Visible/UV-DRS spectrophotometer.
11) Study of imperfections in crystals
12) Study of Raman spectroscopy
13) Study of cyclic voltammetry.
14) Synthesis of nanoparticles using hydrothermal method
15) THin film deposition using Electrochemical deposition
16) Simulation of Fick's laws using python
 17) Study of phase diagrams

18) Virtual lab: Poisson's ratio and Young's modulus (Amrita	
University)	
19) Study of Energy storage systems	

- 1. An Advanced course in Practical Physics, D. Chattopadhyay and P. C. Rakshit
- 2. B. Sc. Practical Physics, C.L.Arora
- 3. B. Sc. Practical Physics, Harnam Singh
- 4. University Physics with Modern Physics, Sears and Zemansky
- 5. Fundamental of Physics, Halliday and Resnick
- 6. Fundamental of Optics, Francis Jenkins, Harvey White

23ScPhyU6202 (T+P): Medical and Biophysics

Progressive Education Society's Modern College of Arts, Science and Commerce, Shivajinagar, Pune - 5

T.Y.B.Sc. Physics (2023 Course under NEP 2020)

Course Code: 23ScPhyU6301 Course Name: Physics Minor IV (Modern Physics)(T+P)

Teaching Scheme: TH: 2 Hours/Week
Examination Scheme: CIA: 20 Marks

Credit: 02
ESE: 30 Marks

Prerequisite Courses:

• Familiarity with 10+2 level physics syllabus.

• Familiarity with 23ScPhyU3301

Course Objectives:

- To Learn Dual Nature of Waves and Matter
- To Study Historical Evolution of Atomic Models
- To Learn Basics of Concept of Quantization of Energy Levels in Atoms
- To Study Basics of LASER
- To enrich knowledge of modern physics through problem solving

Successful completion of this course students will able to:

CO No	Course Outcomes (COs)	Blooms Cognitive level
CO 1	Discuss the De Broglie wavelength of matter waves, wave particle duality	1
CO 2	Compare Dual Nature of Waves and Matter	2
CO 3	Apply the Bohr's Atomic Model to Hydrogen Atom	3
CO 4	Explaining wave functions and 1D Schrodinger's equation	4
CO 5	Reviewing Concept of Quantization of Energy Levels in Atoms	5
CO 6	Solve simple problems on wave particle duality and atomic models, Uncertainty principle	6

Course Co.	Course Contents		
Chapter 1	Photons: Light Waves Behaving as a Particles	12 Lectures	
	 Light absorbed as photons: The photoelectric Effect Light emitted as photons: X-Ray production Light scattered as photons: Compton Scattering Wave particle Duality, Probability and Uncertainty Problems 		

Chapter 2	Particle Behaving as waves	12 Lectures
	 Electron Waves Nuclear Atom and Atomic Spectra Energy Levels and the Bohr Model of the atom The LASER Continuous Spectra Problems 	
Chapter 3	Quantum Mechanics I: Wave functions	6 Lectures
	 Wave Functions and 1D Schrodinger equation(both time dependent and independent) Particle in 1D infinite potential well 	

- 1. Sear's and Zimansky's University Physics with Modern Physics, Young and Freedman
- 2. Concepts of Modern Physics Arthur Beiser, Shobit Mahajan, S Rai Choudhury, Mc-Graw Hill
- 3. Fundamentals of Physics, Haliday, Resnick and Walker
- 4. Perspective of Modern Physics- Arthur Beiser
- 5. Introduction to Quantum Mechanics: David J. Griffiths
- 6. Quantum Physics: Eisberg and Resnick

Progressive Education Society's Modern College of Arts, Science and Commerce, Shivajinagar, Pune - 5

T.Y.B.Sc. Physics (2023 Course under NEP 2020)

Course Code: 23ScPhyU6301 Course Name: Lab course on Physics Minor IV

Teaching Scheme: TH: 2 Hours/Week
Examination Scheme: CIA: 20 Marks

Credit: 02
ESE: 30 Marks

Prerequisite Courses:

• Familiarity with 10+2 level physics syllabus.

• Familiarity with 23ScPhyU3301

Course Objectives:

- To Learn Dual Nature of Waves and Matter
- To Study Historical Evolution of Atomic Models
- To Learn Basics of Concept of Quantization of Energy Levels in Atoms
- To Study Basics of LASER
- To enrich knowledge of modern physics through problem solving

Successful completion of this course students will able to:

CO No	Course Outcomes (COs)	Blooms Cognitive level
CO 1	Discuss the De Broglie wavelength of matter waves, wave particle duality	1
CO 2	Compare Dual Nature of Waves and Matter	2
CO 3	Apply the Bohr's Atomic Model to Hydrogen Atom	3
CO 4	Explaining wave functions and 1D Schrodinger's equation	4
CO 5	Reviewing Concept of Quantization of Energy Levels in Atoms	5
CO 6	Solve simple problems on wave particle duality and atomic models, Uncertainty principle	6

Study of Photoelectric effect	
2. Planck's constant using photocell/LDR/photodiode	

- 3. Energy gap of semiconductor (Ge diode)
- 4. Angle of Prism
- 5. Calibration of spectrometer
- 6. Verification of laws of reflection and refraction
- 7. Determination of resolving power of grating
- 8. Determination of refractive index of liquid using hollow prism
- 9. Plane diffraction grating
- 10. Newton's ring
- 11. Resistivity by Four Probe method
- 12. e/m by Thomson's Method
- 13. Characteristics of LASER beam
- 14. Study of Frank-Hertz experiment
- 15. Virtual lab: Verification of Stefan's law
- 16. Virtual lab: Study of Blackbody radiation
- 17. Virtual lab: Millikan's oil drop method
- 18. Virtual lab: Rutherford scattering (PhET)

- 1. An Advanced course in Practical Physics, D. Chattopadhyay and P. C. Rakshit
- 2. B. Sc. Practical Physics, C.L.Arora
- 3. B. Sc. Practical Physics, Harnam Singh
- 4. University Physics with Modern Physics, Sears and Zemansky
- 5. Fundamental of Physics, Halliday and Resnick
- 6. Fundamental of Optics, Francis Jenkins, Harvey White

Progressive Education Society's Modern College of Arts, Science and Commerce, Shivajinagar, Pune - 5

T.Y.B.Sc. Physics (2023 Course under NEP 2020)

Course Code: 23ScPhyU6004 **Course Name: On Job Training**

Teaching Scheme: TH: 8 Hours/Week Examination Scheme: CIA: 40 Marks Credit: 04

ESE: 60 Marks