Progressive Education Society's Modern College of Arts, Science and Commerce,

Shivajinagar, Pune – 5 (Autonomous College)

Third Year of B.Sc. (Computer Science) Major Elective: Electronics Under NEP_2020(NEP 2023) SEMESTER VI

Course Code: 23CsEleU6203 Course Name: Embedded System

Teaching Scheme: TH: 2 hrs / Week Credit: 02

Examination Scheme: CIA: 20 Marks End-Sem: 30 Marks

Prerequisites: Basic knowledge of Microcontroller, Digital Electronics, and C Programming.

Course Objectives: This course will enable the students to:

- 1. To understand the architecture 8-bit microcontroller
- 2. To understand registers and modules of PIC controller.
- 3. To understand basics of interfacing concepts.
- 4. To learn software techniques to embed codes into the systems.
- 5. To interface different peripherals to PIC controller.
- 6. To learn communication standards and protocols

Course Outcomes

- Understand the architecture and components of embedded systems.
- Understand the **architecture and operation** of PIC microcontrollers.
- **C programming** for PIC.
- Design and develop embedded system applications using hardware and software tools.
- Interface peripherals such as sensors, actuators, and communication devices with PIC.
- Develop real-time embedded applications.
- Gain exposure to **PIC development tools** and simulation software.

Course Contents

Chapter 1	Introduction to Embedded Systems & PIC Microcontrollers	8 hrs
	Definition and characteristics of embedded systems, Applications of embedded systems, Differences between general-purpose and embedded systems, Embedded system design process, Introduction to PIC microcontrollers, PIC microcontroller families & selection criteria, Applications of PIC-based systems.	
Chapter 2	PIC Microcontroller Architecture	16 hrs
	Internal architecture of PIC microcontrollers:- CPU, Memory (Flash, RAM, EEPROM), I/O Ports and Pin configuration, Clock and Reset circuits, Power-saving modes. Interrupt handling & Priorities	
Chapter 3	PIC Programming Fundamentals	8Hrs
	Assembly vs. Embedded C programming Overview of MPLAB X IDE and XC8 Compiler Writing, compiling, and debugging programs, Interfacing LEDs, switches, and buzzers, Introduction to Timers & Delays, Timers and Counters (PWM generation),Serial Communication (UART, SPI, I2C)	
Chapter 4	Sensor Interfacing & Data Acquisition	6Hrs
	Analog-to-Digital Converter (ADC), Digital-to-Analog Conversion (DAC), Interfacing Temperature Sensors (LM35, DHT11, etc.) IR Sensors, Ultrasonic Sensors, Accelerometer & Gyroscope Interfacing Data acquisition and real-time applications	

Text/ Reference Books:

- 1. "PIC Microcontroller and Embedded Systems" Muhammad Ali Mazidi
- 2. "Programming PIC Microcontrollers in C" Lucio Di Jasio
- 3. "Embedded C Programming & the Microchip PIC" Richard H. Barnett
- 4. Microchip Official Website & Documentation
- 5. MPLAB X IDE & XC8 Compiler User Guides

Progressive Education Society's

Modern College of Arts, Science and Commerce,

Shivajinagar, Pune – 5 (Autonomous College)

Third Year of B.Sc. (Computer Science) Major Elective: Electronics Under NEP_2020(NEP 2023) SEMESTER VI

Course Code: 23CsEleU6203 Course Name: Lab Course on Embedded system

Teaching Scheme: PR: 4 hrs / Week Credit: 02

Examination Scheme: CIA: 20 Marks End-Sem: 30 Marks

Prerequisites: Basic knowledge of Digital Electronics and C programming

Course Outcomes:

• Understand the architecture and components of embedded systems.

- Understand the architecture and operation of PIC microcontrollers.
- Develop basic C programming for PIC microcontroller.
- Design and develop embedded system applications using hardware and software tools.
- Understand to Interface peripherals such as sensors, actuators, and communication devices with PIC.
- Develop soft real-time embedded applications.
- Gain exposure to PIC development tools and simulation software.

List of Practical

- 1. Getting Started with MPLAB X IDE & XC8 Compiler.
- 2. Arithmetic operations of PIC using MPLAB X software.
- 3. Basic I/O operations of PIC with Switch Interfacing: Single key interface result on LED.
- 4. Study of LED bank interfacing and programming to PIC microcontroller.
- 5. To study for Generating Delays using Timers and SSD Interfacing to PIC microcontroller.
- 6. Study of waveform generations using DAC and PIC.
- 7. Study for PWM Generation for speed control of DC motor using PIC.
- **8.** Study of External interrupt as input switch press, output at relay.
- 9. Study to interface ADC for reading of sensor values using PIC.
- 10. Programming for UART Communication of PIC with PC.
- 11. To study the I2C Interfacing with external EEPROM.
- 12. To study programming for LCD Interface (16x2 & Graphical LCD).
- 13. Study to interface Stepper Motor to PIC.
- 14. Study Wireless communication using Bluetooth module and PIC.
- 15. Mini project Embedded system based on PIC microcontroller.