Progressive Education Society's Modern College of Arts, Science and Commerce (Autonomous),

Shivajinagar, Pune 5

(An Autonomous College Affiliated to Savitribai Phule Pune University)

Framework of Syllabus For

B.Sc. (Mathematics)

(Based on NEP 2020 framework)
(To be implemented from the Academic Year 2023-24)

Eligibility

As per the eligibility circular of SPPU

Credit System:

As per the GR No. एनईपी-2022/प्र.क्र.09/विशी -3/शिकाना dated : 20 April 2023

Credit Framework

Levels	Qualification	Credit Re	quirements	Semester	
Levels	Title	Minimum	Maximum	Scinester	Year
4.5	UG Certificate	40	44	2	1
5.0	UG Diploma	80	88	4	2
5.5	Three Year Bachelor's Degree	120	132	6	3
6.0	Bachelor's Degree- Honours Or	160	176	8	4
	Bachelor's Degree- Honours with Research				

Pattern of examination:

Continuous Internal Examination:

10 M: Field work / Practical

30 M: Online Objective examination / Practical

End Semester Examination : 60 M descriptive Examination

End Semester Examination Question Paper Pattern:

Mode: Descriptive Total Marks: 60

Total questions: 5:12 Mark each

Each question contains either 3 or 4 marks questions with maximum 2 option

questions

Standard of passing

< 40 % marks : Fail

Separate passing for Internal and External examination.

CIE passing: 16 marks and above ESE passing: 24 marks and above

ATKT rules

FY to SY progression: 70 % credits should be completed SY to TY progression: 50 credits should be completed

Award of Class:

"O": Outstanding: Grade point 10: % 80-100

"A+" : Excellent : Grade point 9 : % 70-79

"A": Very Good: Grade point 8: % 60-69

"B+" : Good : Grade point 7 : % 55-59

"B" : Above Average : 6 : % 50-54

"C": Average: Grade point 5: % 45-49

"P": Pass: Grade point 4: %40-44
"F": Fail: Grade point 0: % 0-39

"Ab": Absent: Grade Point 0

Scoring:

CIE Score	ESE Score	Result
<40%	< 40%	Fail
<40 %	>=40%	Fail
>=40%	<40 %	Fail
>=40%	>=40%	Pass

Semester 1 (First Year) Level 4.5

Cour se Typ e	Cours e	Course Code	Course / Paper Title	Hour s / We ek	Cred it	CI A	ES E	Tota I
Major Manda tory (4+2)	Major Paper 1 (Theory)	23ScMatU 1101	Algebra	2	4	40	60	100
	Major Paper 2 (Practic al)	23ScMatU 1102	Lab course on 23ScMatU 1101	4	2	20	30	50
Major Electi ves	-							
Minor	-							
OE (2 + 2)	Theory	23ScMatU 1401	Fundamen tals of Mathemati cs	2	4	40	60	100
		23CoCop U1402	Democrac y, Election and Governanc e	2				
VSC (2)	Major Specific Practical I	23ScMatU 1501	Lab Course on Logic	4	2	20	30	50

SEC (2)	Skill Paper 1 (Practical)	23ScMatU 1601	Lab Course on Analytical Geometry	4	2	20	30	50
AEC(2),	MIL	23CpCop U1701 / 23CpCop U1702	MIL-I (Hindi) / MIL-I (Marathi)	2	2	20	30	50
VEC (2)	EVS Theory	23CoCop U1801	Environme nt Science I	2	2	20	30	50
IKS (2)		23CpCop U1901	Generic IKS	2	2	20	30	50
CC (2)	CC-I Course	23CoCop U1001	Online Course Based on Yoga	2	2	20	30	50
Total				28	22	22 0	330	550

Semester 2 (First Year) Level 4.5

	~ 011102001 _	(THSC ICAL) = 0 + 01 100					
Cour se Typ e	Course	Course Code	Course / Paper Title	Hour s /We ek	Credi	CIA	E S E	Tota I
Major Manda	Major Paper 3 (Theory)	23ScMat U2101	Calculus	2	4	40	60	100
tory (4+2)	Major Paper 4 (Practical)	23ScMat U2102	Lab Course on 23ScMatU21 01	4	2	20	30	50
Major Electi ves	-							
Minor	Minor Paper I (Practical)	23ScMat U2301	Lab Course on Linear Algebra	4	2	20	30	50
OE (2 + 2)	Theory	23ScMat U2401	Business Mathematic s	2	4	40	60	100
		23CoCop U2402	Fundamental s of Music	2				
VSC (2)	Major Specific Practical II	23ScMat U2501	Lab Course on Discrete Mathematic s	4	2	20	30	50

SEC (2)	Skill Paper 1I (Practical)	23ScMat U2601	Lab Course on Computatio nal Geometry	4	2	20	30	50
AEC(2),	English Theory	23CoCop U2703	English Communicat ion Skills I	2	2	20	30	50
VEC (2)	EVS Theory	23CoCop U2801	Environment Science II	2	2	20	30	50
IKS (2)								
CC (2)	CC-II Course	23CoCop U2001/ 23CoCop U2011/ 23CoCop U2021/ 23CoCop U2031/ 23CoCop U2041/ 23CoCop U2051/ 23CoCop U2061/ 23CoCop U2071	Physical Education / Cultural Activities,/ NSS/ NCC/ Fine Arts/ Applied Arts/ Visual Arts/ Performing Arts	2	2	20	30	50
Total				30	22	220	330	550
						· 		

Semester 3 (Second Year) Level 5

Cour se Type	Course	Course Code	Course / Paper Title	Hour s / W ee k	Cred it	CIA	ES E	Total
Majo r Manda tory	Major Core Paper 5 (Theory)	23ScMat U3101	Multivariate Calculus	4	4	40	60	100
(4+4)	Major Paper 6 (Practica I)	23ScMat U3102	Lab Course on 23ScMatU31 01	4	2	20	30	50
	Major Paper 7 (Theory) Major Specific IKS	23ScMat U1901	Ancient Indian Mathematics	2	2	20	30	50
Majo r Electi ves	-							
Minor (4)	Minor Paper II (Theory + Practical)	23ScMat U3301	Discrete Mathematics (T+P)	4	4	40	60	100

OE (2)	Theory	23ScMat U3401	Financial Mathematics	2	2	20	30	50
VSC (2)	Major Specific Practical III	23ScMat U3501	Lab Course on Computer Oriented Numerical Methods	4	2	20	30	50
SEC (2)								
AEC(2)	Theory	23CoCop 3703	English Communicati on Skills II	2	2	20	30	50
VEC (2)	1		-					
FP/CEP (2)	FP –I	23ScMat U3002	Field Project - I	4	2	20	30	50
CC(2)	CC III	23CoCop 3001	Fitness	2	2	20	30	50
Total				32	22	220	330	550

Semester 4 (Second Year) Level 5

Cour se Type	Course	Course Code	Course / Paper Title	Ho urs / Wee k	Cred it	CIA	ESE	Tota I
Majo r Manda	Major Core Paper 7 (Theory)	23ScMatU 4101	Linear Algebra	4	4	40	60	100
tory (4+4)	Major Paper 8 (Practical)	23ScMatU 4102	Lab Course on 23ScMatU4 101 and SciLab	8	4	40	60	100
Major Elective s	-							
Minor (4)	Minor Paper III (Theory + Practical)	23ScMatU 4301	Elementary Calculus (T+P)	4	4	40	60	100
OE (2)	Theory	23ScMatU 4401	Basics of Operations Research	2	2	20	30	50
VSC (2)								
SEC (2)	Skill Paper III (Practical)	23ScMatU 4601	Lab Course on Vector Calculus	4	2	20	30	50

AEC(2),	Theory	23CoCop4 701/ 23CoCop4 702	MIL-II (Hindi) / MIL-II (Marathi)	2	2	20	30	50
VEC (2)								
IKS (2)								
FP / CEP(2)	CEP –I	23ScMatU 4003	Community Engagemen t Project	4	2	20	30	50
CC(2)	CC-4	23CoCop4 001	Health and Wellness	2	2	20	30	50
Total				32	22	220	330	550

Semester 5 (Third Year) Level 5.5

Cour	Course	Course	Course /	Hour	Cre	CIA	Ε	Tot
se		Code	Paper Title	S	dit		S	al
Type				/W			Ε	
				ee				
				k				

Majo r Mand	Major Core Paper 9 (Theory)	23ScMatU 5101	Real Analysis	4	4	40	6 0	100
atory (4+4 +2)	Major Paper 10 (Theory)	23ScMatU 5102	Abstract Algebra	4	4	40	6 0	100
	Major Paper 11 (Practical)	23ScMatU 5103	Lab Course on 23ScMatU51 01 & 23ScMatU51 02	4	2	20	3	50
Majo	Elective I	23ScMatU	Operations	2	4	40	6	100
r Electi	(Theory + Practical)	5201	Research (T+P)	4			0	
ves	Elective II	23ScMatU	Metric Spaces	2	4	40	6	100
	(Theory + Practical)	5202	(T+P)	4			0	
Mino	Minor Paper	23ScMat	Ordinary	2	4	40	6	100
r (4)	IV (Theory + Practical)	U5301	Differential Equations (T+P)	4			0	
OE (2)								
VSC (2)	Major Specific Practical IV	23ScMatU 5501	Lab Course on Latex	4	2	20	30	50
SEC (2)								
AEC(2),								
VEC (2)								
IKS (2)								

FP / CEP(2)	FP –II	23ScMatU 5002	Field Project - II	4	2	20	30	50
Total				38	22	22 0	33 0	550

Semester 6 (Third Year) Level 5.5

Cour se Type	Course	Course Code	Course / Paper Title	Hou rs /W e e k	Cred it	CIA	ESE	Total
Major Manda tory (4+4	Major Core Paper 12 (Theory)	23ScMatU 6101	Complex Analysis	4	4	40	60	100
+ 2)	Major Paper 13 (Theory)	23ScMatU 6102	Differential Equations	4	4	40	60	100
	Major Paper 14 (Practical)	23ScMatU 6103	Lab Course on 23ScMatU610 1 & 23ScMatU610 2	4	2	20	30	50
Major Electi ves	Elective III (Theory + Practical)	23ScMatU 6201	Number Theory (T+P)	4	4	40	60	100
	Elective IV (Theory + Practical)	23ScMatU 6202	Laplace Transforms and Fourier Series (T+P)	4	4	40	60	100

Minor (4)	Minor Paper V (Theory + Practical)	23ScMat U6301	Numerical Methods and its applications (T+P)	4	4	40	60	100
OE (2)								
VSC (2)					-	1	-	
SEC (2)								
AEC(2),					-			
VEC (2)								
IKS (2)						-		
FP / CEP(2)					1	-		
OJT(4)	OJT	23ScMatU 6004	On Job Training	8	4	40	60	100
Total				38	22	22 0	330	550

OE : Open Elective

AEC: Ability Enhancement Course

VEC: value Education Courses CC: Co-Curricular Courses

IKS: Indian Knowledge System

OJT: On Job Training

FP: Field Project

VSC: Vocational Skill Courses

CEP: Community Engagement Project

Modern College of Arts, Science and Commerce (Autonomous), Shivajinagar, Pune - 5

Second Year of B.Sc. Mathematics (2023 Course under NEP 2020)

Course Code: 23ScMatU3101 Course Name:

Multivariate Calculus

Teaching Scheme: TH: 4 Hours/Week Credit: 04

Examination Scheme: CIA: 40 Marks End-Sem: 60 Marks

Pre-requisite Courses:

• Basic knowledge of Limits, Continuity, Derivatives and Integration of functions of one variable.

• Basic knowledge of curves and surfaces.

Course Objectives:

- The aim of this course is to study the concept of Limits, Continuity, Partial derivatives of functions of two or three variables.
- To study the methods of evaluation of double and triple integration.
- To study the double integrals in polar form.
- To study the applications of double and triple integration.

Course Outcomes:

On completion of the course, student will be able to understand –

- The evaluation of limits of functions and continuity of functions of two and three variables.
- The use of partial derivatives and differentiability in other subjects.
- The applications of extreme values.
- The methods of evaluating double and triple integration using rectangular coordinates, polar coordinates etc.
- The method to calculate area of bounded region in two dimensional space, surface and volume of closed and bounded regions in three dimensional space.

Course Contents

Chapter 1	Limits and Continuity of functions of two and three variables	10 lectures
	 Functions of several variables, graphs and level curves of functions. Limits and continuity. 	
Chapter 2	Partial Derivatives	5 lectures
	 Introduction. Second order partial derivatives. Mixed derivative theorem. Partial derivatives of higher order. 	
Chapter 3	Differentiability	15 lectures
	 Introduction. Conditions for differentiability. Increment theorem for functions of two variables. Linearization and differentials. Chain rule. 	
Chapter 4	Taylor's theorem and Extreme values	10 lectures
	 Taylor's theorem for functions of two variables. Extreme values, 1st derivative test. 2nd derivative test for local extreme values. Lagrange's multipliers method for finding extreme values of one constraint function. 	

Chapter 5	Multiple Integrals	20 lectures
	 Double integral over rectangle, Fubini's theorem for calculating double integrals. Double integrals over general regions. Change of order of integration. Double integral in polar form. Substitution method in double integrals. Triple integration in rectangular coordinates. Substitution method using spherical and cylindrical coordinates in triple integration. Applications to find area and volumes. 	
	Total Lectures	60 Lectures

- 1. Mathematical Analysis, (Fifth edition) by S.C. Malik, Savita Arora, New Age International Publishers (2017).
- 2. A course of Mathematical Analysis, (Revised edition) by Shanti Narayan and P.K. Mittal, S.Chand and Company Pvt. Ltd. (1998)
- 3. T.M. Apostol, Calculus Volume II (2nd Edition) John Wiley, New York (1967).

Modern College of Arts, Science and Commerce(Autonomous), Shivajinagar, Pune - 5

Second Year of B.Sc. Mathematics (2023 Course under NEP 2020)

Course Code: 23ScMatU3102 Course Name: Lab Course on

23ScMatU3101

(Section - I)

Teaching Scheme: PR: 4 Hours/Week Credit: 02
Examination Scheme: CIA: 20 Marks End-Sem:

30 Marks

Pre-requisite Courses:

• Basic knowledge of Limits, Continuity, Derivatives and Integration of functions of one variable.

• Basic knowledge of curves and surfaces.

Course Objectives:

- The aim of this course is to study the concept of Limits, Continuity, Partial derivatives of functions of two or three variables.
- To study the methods of evaluation of double and triple integration.
- To study the double integrals in polar form.
- To study the applications of double and triple integration.

Course Outcomes:

On completion of the course, student will be able to understand –

- The evaluation of limits of functions and continuity of functions of two and three variables.
- The use of partial derivatives and differentiability in other subjects.
- The applications of extreme values.
- The methods of evaluating double and triple integration using rectangular coordinates, polar coordinates etc.
- The method to calculate area of bounded region in two dimensional space, surface and volume of closed and bounded regions in three

dimensional space.

Course Contents

Practical 1: Limits.

Practical 2: Continuity.

Practical 3: Mixed partial derivatives.

Practical 4: Partial derivatives.

Practical 5: Differentiation.

Practical 6: Conditions of differentiability.

Practical 7: Applications of differentials.

Practical 8: Extreme values.

Practical 9: Classification of extreme values.

Practical 10: Lagrange's multipliers method.

Practical 11: Double integration in rectangular coordinates.

Practical 12: Double integration in polar coordinates.

Practical 13: Change of order of integration.

Practical 14: Triple integration in rectangular coordinates.

Practical 15: Triple integration in spherical coordinates.

- 1. Mathematical Analysis, (Fifth edition) by S.C. Malik, Savita Arora, New Age International Publishers (2017).
- 2. A course of Mathematical Analysis, (Revised edition) by Shanti Narayan and P.K. Mittal, S.Chand and Company Pvt. Ltd. (1998)
- 3. T.M. Apostol, Calculus Volume II (2nd Edition) John Wiley, New York (1967).

Modern College of Arts, Science and Commerce(Autonomous), Shivajinagar, Pune - 5

Second Year of B.Sc. Mathematics (2023 Course under NEP 2020)

Course Code: 23ScMatU3901 Course Name: Ancient Indian

Mathematics

Teaching Scheme: TH: 2 Hours/Week Credit: 02

Examination Scheme: CIA: 20 Marks End-Sem: 30

Marks

Pre-requisites: Basic operations of arithmetic.

Course Objectives:

• To understand the glorious history of Mathematics.

• To understand the valuable contribution by Indian mathematicians in the universe.

Course Outcomes:

- This course will help the students to understand the easy methods for arithmetic operations.
- Students have the opportunity to elaborate and extend their knowledge of mathematics.

Course Contents

Unit 1	History of Mathematics	15 lectures
	 What is Mathematics Skills to learn Mathematics Ancient Indian Mathematics Contribution of ancient Indian mathematicians 	
Unit 2	Vedic Mathematics	15 lectures
	 Arithmetical Computations, Multiplication, Division Factorization Simultaneous Simple Equations Quadratic and Cubic Equations Divisibility Elementary Squaring and Cubing Square roots and Cube roots 	

- 1. Colebrooks Translation of The LILAVATI by H. C. Banerji, Second edition, The Book company Ltd., 1927.
- 2. Geometry according to Sulabh Sutra by R. P. Kulkarni, Vaidika Samsodhana Mandala, 1983.
- 3. https://www.cuemath.com/learn/pingala-mathematician/ (03/06/2023)
- 4. The Aryabhatiya of Aryabhata: An ancient Indian work on Mathematics and Astronomy by Walter Eugene Clark, The University of Chicago Press, 1930.
- 5. A modern introduction to Ancient Indian Mathematics by T. S. Bhanu Murthy, New Age International, 1993.

- 6. Vedic Mathematics by Jagadguru Swami Sri B. K. Tirthaji Maharaj, Motilal Banarsidass Publishers Pvt. Ltd., Delhi, 1992.
- 7. https://en.wikipedia.org/wiki/Indian_mathematics (02/06/2023).
- 8. https://motion.ac.in/blog/top-10-famous-indian-mathematicians-a nd-their-contributions/ (02/06/2023).

Modern College of Arts, Science and Commerce (Autonomous),

Shivajinagar, Pune - 5

Second Year of B.Sc. Mathematics (2023 Course under NEP 2020)

Course Code: 23ScMatU3301 Course Name:

Discrete Mathematics

(Section - I)

Teaching Scheme: TH: 2 Hours/Week Credit: 2

Examination Scheme: CIA: 20 Marks End-Semester: 30

Marks

Prerequisites:

• Sets.

Course Objectives:

The aim of this course is

- To check equivalence of statements.
- To check the statements for tautology, contradiction and contingency.
- To study methods of proofs.
- To study more generalized counting principles.
- To study linear homogeneous recurrence relations.

Course Outcomes:

On completion of the course, student will be able to :-

• Use the concept of logic in other mathematical courses.

- Apply different methods of proofs.
- Solve problems based on counting principles.
- Solve linear homogeneous recurrence relations.

Course Contents:

Chapter 1	Propositional Logic and Predicates	6 lectures
	 Propositional logic. Truth Tables Propositional Equivalences. Predicates and Quantifires. Nested quantifires. 	
Chapter 2	Methods of Proofs	8 lectures
	 Method of Induction. Method of Contradiction. Methods of Contraposition. 	
Chapter 3	Counting Technique	8 lectures
	 The sum rule and product rule. Permutations and Combinations without repetition. Permutations and Combinations with repetitions. Partition Inclusion-Exclusion Principle 	
Chapter 4	Graphs	8 lectures
	Introduction.SubgraphsOperations on graphs.Trees	
	Total Lectures	30

Reference Books:

1. Discrete Mathematics and Its Applications by Kenneth H. Rosen, Seventh Edition,

McGraw Hill, 2011.

2. Discrete Mathematics Structure by Bernard Kolman, Robert Busby, Sharon Cutler

Ross, Nadeem-ur-Rehman, Pearson Education (6th Edition), 2009.

3. Applied Combinatorics by Alan Tucker, Wiley Publication, Fourth Edition, 2001.

Modern College of Arts, Science and Commerce (Autonomous),

Shivajinagar, Pune - 5

Second Year of B.Sc. Mathematics (2023 Course under NEP 2020)

Course Code: 23ScMatU3301 Course Name:

Discrete Mathematics

(Section - II)

Teaching Scheme: 4 Hours/ Week Credit: 2

Examination Scheme: CIA: 20 Marks End-Semester:30

Marks

Prerequisites:

• Sets.

Course Objectives:

The aim of this course is

- To check equivalence of statements.
- To check the statements for tautology, contradiction and contingency.
- To study methods of proofs.
- To study more generalized counting principles.
- To study linear homogeneous recurrence relation.

Course Outcomes:

On completion of the course, student will be able to :-

- Use the concept of logic in other mathematical courses.
- Apply different methods of proof.
- Solve problems based on counting principles.
- Solve linear homogeneous recurrence relation.

Course Contents:

Practical 1: Propositions
Practical 2: Truth Tables

Practical 3: Tautology, Contradiction and Contingency

Practical 4: Applications of logic

Practical 5: Predicates and Quantifiers

Practical 5: Validity of arguments

Practical 6: Methods of Induction

Practical 7: Proofs by Contradiction

Practical 8: Proofs by Contraposition

Practical 9: Counting principles

Practical 10: Arrangement and selection without repetition

Practical 11: Arrangement and selection with repetition

Practical 12: Partition

Practical 13: Inclusion-Exclusion Principle

Practical 14: Operations on Graphs

Practical 15: Trees

Reference Books:

1. Discrete Mathematics and Its Applications by Kenneth H. Rosen, Seventh Edition,

McGraw Hill, 2011.

2. Discrete Mathematics Structure by Bernard Kolman, Robert Busby, Sharon Cutler

Ross, Nadeem-ur-Rehman, Pearson Education (6th Edition), 2009.

3. Applied Combinatorics by Alan Tucker, Wiley Publication, Fourth Edition, 2001.

Modern College of Arts, Science and Commerce (Autonomous), Shivajinagar, Pune - 5

Second Year of B.Sc. Mathematics (2023 Course under NEP 2020)

Course Code: 23ScMatU3401

Course Name: Financial Mathematics Teaching Scheme: TH: 2 Hours/Week

Credit: 02

Examination Scheme: CIA: 20 Marks End-Sem:

30 Marks

Prerequisites: Basic knowledge of derivatives, matrices, linear equations, elementary statistics, principles of economics

Course Objectives: The aim of this course is to study

- Computational skills necessary to implement pricing, hedging, trading and risk management tools.
- Mathematical modeling techniques used in finance.
- How to improve your personal skills, including logical reasoning, quantitative analysis.
- How to apply mathematical concepts in financial models, economics.

Course Outcomes: On completion of the course, student will able to

- Apply the concepts of financial mathematics in Actuarial science to study of assessing risk in insurance and finance also in, Data mining, Data Science, Econometrics.
- Apply the concepts of calculus in finance related models.
- Apply the mathematical concepts in different financial contexts.
- Design the quantitative methodologies and techniques useful in investment banks and other financial institutions.

Course Contents:

Unit 1	Mathematical models in economics	06 Lectures
	IntroductionA model of the market	

	Market equilibrium and excise tax.	
Unit 2	The elements of finance and the cobweb model	08 Lectures
	 Interest and capital growth Income generation The interval of compounding 	
Unit3	Introduction to optimization:	08 Lectures
	 Profit maximization Critical points Profit maximization using derivatives 	
Unit 4	Portfolios	08 Lectures
	 Introduction to portfolios Making money with matrices A two-industry 'economy', arbitrage portfolios and state prices 	
	Total Lectures	30 Lectures

- 1. Introduction to Financial Mathematics by Arash Fahim, Florida State University, 2019.
- 2. Mathematical Economics by Edward T. Dowling, Schaum's outline Series. McGraw Hill International Edition, Second Edition.
- 3. Calculus of Finance by Amber Habib, University Press, 2011.
- 4. Mathematics for Economics and Finance Methods and Modeling by Martin Anthony and Norman Biggs, Cambridge University Press, 2012

Modern College of Arts, Science and Commerce (Autonomous), Shivajinagar, Pune - 5

Second Year of B.Sc. Mathematics (2023 Course under NEP 2020)

Course Code: 23ScMatU3501 Course Name: Lab

Course on Computer

Oriented Numerical Methods

Teaching Scheme: TH: 4 Hours/Week Credit:

02

Examination Scheme: CIA: 20 Marks End-Sem: 30

Marks

Prerequisites:

• Equations, Functions, Polynomials and Differential Equations.

Course Objectives: To study

- Solution of equations
- Solution of the system of linear equations.
- Curve fitting.
- Polynomial approximation and interpolation.
- Numerical differentiation and integration.
- Solving Ordinary Differential Equations
- Course Outcomes: On completion of the course, student will be able to: -
 - Find approximate real root of an equation
 - Solve a system of linear equations numerically.
 - Approximate a function by a polynomial with desired accuracy.
 - Interpolate an equally spaced and unequally spaced data.
 - Find numerical differentiation and integration.
 - Solve Ordinary Differential Equations numerically.

Course Contents

Practical 1: Errors and Bisection method

Practical 2: Regula Falsi method and Secant method

Practical 3: Newton Raphson Method

Practical 4: Aitken's Δ^2 -process.

Practical 5: Operators

Practical 6: Newton's forward interpolation formula

Practical 7: Newton's Backward interpolation formula

Practical 8: Lagrange's interpolation formula

Practical 9: Newton's Divided difference formula

Practical 10: Numerical Differentiation

Practical 11: Numerical Integration

Practical 12: Euler's Modified Method

Practical 13: Runge Kutta method

Practical 14: Gauss Seidel elimination method

Practical 15: Least square method

- 1. Introductory Methods of Numerical Analysis by S.S. Sastry, Prentice Hall of India
 - Fifth Edition, 2012.
- 2. Finite differences and Numerical Analysis by H.C. Saxena, S. Chand, 2010.
- 3. A textbook of Computer Based Numerical and Statistical Techniques by A. K.Jaiswal and Anju Khandelwal, New Age International Publishers, 2009.
- 4. Computer oriented Numerical Methods by V. Rajaraman, PHI Learning Private Limited,
 - New Delhi, Third Edition, 2011.
- 5. Numerical Methods by E Balagurusamy, Tata McGraw Hill Education Private Limited, New Delhi, Reprint 2012.

Modern College of Arts, Science and Commerce (Autonomous), Shivajinagar, Pune - 5

Second Year of B.Sc. Mathematics (2023 Course under NEP 2020)

Course Code: 23ScMatU4101 Course Name: Linear

Algebra

Teaching Scheme: TH: 4 Hours/Week Credit: 04

Examination Scheme: CIA: 40 Marks End-Sem: 60 Marks

Prerequisites: Basic knowledge of function, matrices and system of linear equations.

Course Objectives: To study,

• How to find the dimension of a vector space.

• Inner product on a vector space.

• How to represent linear transformation as a matrix.

Course Outcomes: Student will be able to,

- Solve the problems on how to check whether a given set is a basis of a vector space.
- Understand the usual vector spaces used in analysis or other subjects.
- Understand use of Inner product spaces.

Course Contents:

Chapter 1	Vector Spaces	18
		lectures

	 Definition and Examples, Subspaces, Necessary and Sufficient condition for subspace, Direct sum of subspaces. Linear span, Linear dependence and independence. Basis and dimension, Dimension of a subspace Coordinates Row space, Column space of a matrix Null space, Range space, Dimension theorem for matrix, Basis and dimension of solution space of homogeneous system of linear equations. 	
Chapter 2	Linear Transformations	18 lectures
	 Definition and examples, Properties of linear transformation. Composite of linear transformations, Equality of linear 	
	transformations. • Kernel and range of a linear transformation. • Inverse of a linear transformation. • Matrix of a linear transformation.	

	 Eigen values and Eigen vectors of a matrix, Eigenspace. Eigen values and Eigen vectors of a linear transformation. Diagonalization of a matrix. 	
Chapter 4	Inner product spaces	15 lectures
	 Inner product, Norm, Distance between two vectors. Orthonormal basis, Orthogonal projection. Gram Schmidt process to obtain orthonormal basis. 	
Total Lectures		60 lectures

- 1. Schaum's outline of Theory and Problems of Linear Algebra by Seymour Lipschitz and Marc Lars Lipson, 3rd edition, 1968.
- 2. Introduction to Linear Algebra by Gilbert Strang, Wellesley-Cambridge Press, U.S.; 6th edition, 2023.
- 3. Matrix and Linear Algebra aided with Matlab by Kanti Bhushan Datta, PHI Learning Pvt. Ltd., New Delhi, Second edition, 2012.
- 4. Linear Algebra, A geometric approach by S. Kumaresan, PHI Learning Pvt. Ltd., New Delhi, 2009.

Modern College of Arts, Science and Commerce (Autonomous),

Shivajinagar, Pune - 5

Second Year of B.Sc. Mathematics (2023 Course under NEP 2020)

Course Code: 23ScMatU4102 Course Name: Lab Course on

23ScMatU4101

(Section I)

Teaching Scheme: PR: 4 Hours/Week Credit: 02
Examination Scheme: CIA: 20 Marks End-Sem:

30 Marks

Prerequisite Course: Linear Algebra.

Course Objective: The student should be able to solve problems depending

on the contents in

Linear Algebra.

Course Outcomes: On completion of the course, student will be able to

• Understand the theoretical concepts in Linear Algebra.

• Apply this knowledge in various courses of Science and Technology.

Course Contents

Practical 1: Vector spaces

Practical 2: Subspaces

Practical 3: Sums and direct sums

Practical 4: Linear dependence and independence

Practical 5: Basis

Practical 6: Row space and column space

Practical 7: Applications to matrices

Practical 8: Linear transformations

Practical 9: Kernel and image

Practical 10: Isomorphism

Practical 11: Eigenvalues and eigenvectors

Practical 12: Diagonalization

Practical 13: Inner product spaces

Practical 14: Orthogonality

Practical 15: Gram-Schmidt process

Reference Books:

- 1. Schaum's outline of Theory and Problems of Linear Algebra by Seymour Lipschitz and Marc Lars Lipson, 3rd edition, 1968.
- 2. Introduction to Linear Algebra by Gilbert Strang, Wellesley-Cambridge Press, U.S.; 6th edition, 2023.
- 3. Matrix and Linear Algebra aided with Matlab by Kanti Bhushan Datta, PHI Learning Pvt. Ltd., New Delhi, Second edition, 2012.
- 4. Linear Algebra, A geometric approach by S. Kumaresan, PHI Learning Pvt. Ltd., New Delhi, 2009.

Progressive Education Society's

Modern College of Arts, Science and Commerce (Autonomous),

Shivajinagar, Pune - 5

Second Year of B.Sc. Mathematics (2023 Course under NEP 2020)

Course Code: 23ScMatU4102 Course Name: Lab Course on

Scilab

(Section - II)

Teaching Scheme: TH: 4 Hours/Week Credit: 02
Examination Scheme: CIA: 20 Marks End-Sem: 30

Marks

Course Objectives:

• To study the Scilab coding for matrix representation and operations on

matrices

- To study the coding for solving the system of linear equations in Scilab
- To study the process to evaluate eigenvalues and eigenvectors of matrices.
- To develop the programming in Sci-notes.
- To analyze the given data.

Course Outcomes: On completion of the course, student will be able to: -

- Deal with operations on matrices
- Solve linear system of linear equations in Scilab
- Evaluate eigenvalues and eigenvectors of matrix and also diagonalization of matrix
- Plot of two-dimensional and three-dimensional curves/surfaces.
- Solve equations using numerical methods.
- Perform data analysis

Course Contents

Practical 1: Introduction of Scilab

Practical 2: Scilab editor

Practical 3: Representation of Matrices

Practical 4: Operations on Matrices

Practical 5: System of linear equations

Practical 6: Eigenvalues and eigenvectors

Practical 7: Diagonalization of matrix

Practical 8: Graphs of functions of one variable

Practical 9: Graphs of functions of two variables

Practical 10: Numerical methods for finding roots of equations

Practical 11: Numerical interpolation

Practical 12: Numerical integration

Practical 13: Vectors

Practical 14: Frequency distribution

Practical 15: Probability distribution

- 1. Scilab: A free software to MATLAB, by Achuthsankar S Nair, S, Chand and Company LTD. Company, 2012.
- 2. Introduction to Scilab: For Engineers and Scientists, by Sandeep Nagar, Apress, 2017.
- 3. Computing in Scilab, by Chetana Jain, Cambridge University Press, 2023.
- 4. https://www.ee.iitm.ac.in/~hsr/scilab/manual.pdf
- 5. https://www.scilab.org/sites/default/files/Scilab_beginners.pdf

Modern College of Arts, Science and Commerce (Autonomous), Shivajinagar, Pune - 5

Second Year of B.Sc. Mathematics (2023 Course under NEP 2020)

Course Code: 23ScMatU4301 Course Name:

Elementary Calculus

(Section - I)

Teaching Scheme: TH: 2 Hours/Week Credit: 02

Examination Scheme: CIA: 20 Marks End-Semester: 30

Marks

Prerequisites:

• Sets, Relation, Limits, Function, Continuity, Differentiability

Course Objectives:

To Study

- Relations and their types of relations.
- Functions and their types of functions.
- Continuity, derivative and their geometrical interpretations.
- Applications of mean value theorems and successive differentiation.
- Taylor's theorem, Maclaurin's theorems and their applications.

Course Outcomes:

On completion of the course, student will be able to:-

- Understand various properties of relations and functions.
- Understand concept and application of continuity, differentiability and mean value theorems.
- Find the nth derivative of the real valued function of a real variable.
- Expand various elementary functions in terms of power series.

Course Contents:

Chapter 1	Relations and Functions	9 lectures
	 Relations, Types of relations, Equivalence relations. Partial relations. Equivalence class, Properties and partition of a set. Digraphs of relations, matrix representation and composition of relations. Definition of a function as a relation, types of functions (one-one, onto and bijective). Transitive closure and Warshall's Algorithm. 	
Chapter 2	Continuity, Differentiability and Integration	11 lectures
	 Limits. Continuity and properties of continuous functions. Differentiability and its properties. Left hand derivative and Right hand derivative. Intermediate value theorem. Rolle's mean value theorem. Lagrange's mean value theorem. Cauchy's mean value theorem. Fundamental theorem of Calculus 	
Chapter 3	Successive Differentiation	5 lectures

Total Lectures		30
	remainders.Taylor's and Maclaurin's Series.	
	 Maclaurin's Theorems with Lagrange's and Cauchy's form of 	
	• Taylor's Theorems with Lagrange's and Cauchy's form of remainders.	
Chapter 4	Taylor's and Maclaurin's Theorems	5 lectures
	 The nth derivatives of standard functions. Leibnitz's theorem and applications. L' Hopital's rule and it's application. 	

- 1. Mathematical Analysis by S. C. Malik and Savita Arora, New Age International Pvt. Ltd. (Second edition), 1992.
- Introduction to Real Analysis by Robert G. Bartle and Donald R. Sherbert, John Wiley & Sons (3rd Edition), 2000
- Calculus Volume I One Variable Calculus with Introduction to Linear Algebra by Tom M. Apostol, John Wiley and Sons (2nd Edition), 2002.
- 4. Differential Calculus by Shanti Narayan and Mittal P. K., S. Chand and Co. (11th Edition), New Delhi, 2005.

Modern College of Arts, Science and Commerce (Autonomous),

Shivajinagar, Pune - 5

Second Year of B.Sc. Mathematics (2023 Course under NEP 2020)

Course Code: 23ScMatU4301 Course Name:

Elementary Calculus

(Section -II)

Teaching Scheme: 4 Hours/ Week Credit: 02

Examination Scheme: CIA: 20 Marks End-Semester: 30

Marks

Prerequisites:

• Sets, Relation, Function, Limits, Continuity, Differentiability.

Course Objectives:

To Study

- Relations and their types of relations.
- Functions and their types of functions.
- Continuity, derivative and their geometrical interpretations.
- Applications of mean value theorems and successive differentiation.
- Taylor's theorem, Maclaurin's theorems and their applications.

Course Outcomes:

On completion of the course, student will be able to:-

- Understand various properties of relations and functions.
- Understand concept and application of continuity, differentiability and mean value theorems.
- Find nth derivative of real valued function.
- Expand elementary functions in terms of power series.

Course Contents:

Practical 1: Relations

Practical 2: Functions

Practical 3: Equivalence and partial order relations

Practical 4: Transitive closure and Warshall's algorithm

Practical 5: Limits and Continuity

Practical 6: Intermediate value theorem

Practical 7: Differentiability

Practical 8: Rolle's theorem

Practical 9: Lagrange's mean theorem

Practical 10: Cauchy's mean value theorem

Practical 11: L'Hopital's rule and its application

Practical 12: Successive differentiation

Practical 13: Leibnitz's theorem

Practical 14: Taylor's and Maclaurin series

Practical 15: Integration

Reference Books:

- 1. Mathematical Analysis by S. C. Malik and Savita Arora, New Age International Pvt. Ltd. (Second edition), 1992.
- Introduction to Real Analysis by Robert G. Bartle and Donald R. Sherbert, John Wiley & Sons (3rd Edition), 2000
- 3. Calculus Volume I One Variable Calculus with Introduction to Linear Algebra by Tom
 - M. Apostol, John Wiley and Sons (2nd Edition), 2002.
- 4. Differential Calculus by Shanti Narayan and Mittal P. K., S. Chand and Co. (11th Edition),

New Delhi, 2005.

Modern College of Arts, Science and Commerce (Autonomous), Shivajinagar, Pune - 5

Second Year of B.Sc. Mathematics (2023 Course under NEP 2020)

Course Code:23ScMatU4401 Course Name: Basics of

Operations Research

Teaching Scheme: TH: 2 Hours/Week

Credit: 02

Examination Scheme: CIA: 20 Marks

End-Sem: 30 Marks

Prerequisites: Basic knowledge of linear equations, linear inequality, graphs.

Course Objectives: The aim of this course is to study

- How to formulate real world problems into mathematical models.
- How to find optimum solution of real-world problems using various techniques of operations research.
- Scope and applications of operations research.
- How to build capabilities in the students for analyzing different situations in the industrial scenario involving limited resources and finding the optimal solution within constraints.

Course Outcomes: On completion of the course, student will able to

- Apply the concept of operations research in solving complex problems in economics, finance, defense and management science.
- Design the real-life problems which help in decision making.
- Find optimum solution of formulated linear programming problem.
- Construct various mathematical models in operations research.

Course Contents:

Unit 1	Introduction to operations	05
	research	Lectures

	 History of operations research Objective of History of operations research Applications of operations research Types of mathematical models in operations research Limitations of operations research 	
Unit 2	Linear programming problems	13 Lectures
	 Formulation of linear programming problem Advantages of linear programming problem Solutions of linear programming problem using graphical method Assignment problem Solution of assignment problem 	
Unit 3	Game theory	12 Lectures
	 Formulation of games Two person-zero sum game Games with and without saddle point Graphical solution (2x n, m x 2 game) 	
	Total Lectures	30 Lectures

- 1. Operations Research (Techniques for Management) by V.K. Kapoor, S. Chand, fifth Edition, 2001.
- 2. Operations Research (Theory and Applications) by J.K. Sharma, Macmilan India Ltd., fifth Edition, 2013.
- 3. Operations Research (Theory, Methods & Applications) by S.D. Sharma, Kedarnath Ramnath & co, 1992.

Modern College of Arts, Science and Commerce (Autonomous), Shivajinagar, Pune - 5

Second Year of B.Sc. Mathematics (2023 Course under NEP 2020)

Course Code: 23ScMatU4601 Course Name: Lab Course on

Vector Calculus

Teaching Scheme: TH: 4 Hours/Week Credit: 02

Examination Scheme: CIA: 20 Marks End-Sem: 30 Marks

Prerequisites: Basic knowledge of limits, continuity and derivative of one variable function,

partial derivative, double and triple integral, curves and surfaces., Maxima

software

Course Objectives: The aim of this course is to study

- The limit, continuity and derivative of vector valued functions of one, two and three variables.
- Line integral, surface integral and volume integral.

Course Outcomes: On completion of the course, student will able to understand

- Limits, continuity and gradient.
- Concept of gradient of scalar function, divergence and curl of vector function.
- Use of gradient, divergence, curl and applications of Green's theorem. Stokes theorem and Gauss Divergence theorem.
- Use of integration to find the area of a closed region, surface area and volume of surfaces.

Course Contents

Practical 1: Vector functions of one variable.

Practical 2: Limit of vector function

Practical 3: Continuity of vector function

Practical 4: Constant vector functions

Practical 5: Tangent planes and normal lines

Practical 6: Gradient of scalar function

Practical 7: Directional derivative

Practical 8: Divergence of a vector field

Practical 9: Curl of vector field

Practical 10: Solenoidal and conservative vector field

Practical 11: Integrals and fundamental theorem of calculus

Practical 12: Line integral

Practical 13: Green's theorem

Practical 14: Divergence theorem

Practical 15: Stokes' theorem

- 1. J. N. Sharma, A. R. Vasishtha, Vector Calculus, Krishna Prakashan Media, Thirteenth Edition: 2004.
- 2. Thomas' Calculus, 11th Edition, G. B. Thomas. Revised by Maurice D. Weir, Joel Hass and Frank R. Giordano. Pearson Edition 2012. Articles: 13.1, 13.3, 13.4, 16.1 to 16.8.
- 3. T.M. Apostol, Calculus Vol. II (2nd Edition), John Wiley, New York, (1967).
- 4. Basic Multivariable Calculus, J. E. Marsden, A. J. Tromba, A. Weinstein, Springer Verlag (Indian Edition, 2009).
- 5. Shanti Narayan, R.K. Mittal, A Text-book of Vector Calculus, S.Chand and Company, (1955).