Progressive Education Society's Modern College of Arts, Science and Commerce (Autonomous),

Shivajinagar, Pune 5

(An Autonomous College Affiliated to Savitribai Phule Pune University)

Framework and Syllabus

For

M.Sc. (Mathematics)

(Based on NEP 2020 framework)
(To be implemented from the Academic Year 2023-24)

Semester 1 (First Year) Level 6

Course Type	Course Code	Course	Course / Paper Title	Hours / Week	Credit	CIA	ES E	Tota 1
Major Mandatory (4+4+	23ScMatP111	Major Paper 1(Theory)	Linear Algebra	4	4	50	50	100
4+2)	23ScMatP112	Major Paper 2(Theory)	Group Theory	4	4	50	50	100
	23ScMatP113	Major Paper 3(Theory)	Graph Theory	4	4	50	50	100
	23ScMatP114	Major Paper 4(Practical)	Lab Course on 23ScMatP111, 23ScMatP112 & 23ScMatP113	4	2	25	25	50
Major Electives	23ScMatP121	Major Elective 1 (Theory + Practical)	Ordinary Differential Equations (T + P)	2		50	50	100
(4)				4	4			
	23ScMatP122	Major Elective 2 (Theory + Practical)	C- Programming Language (T + P)	2				
				4				
RM	226 25 (2424	RM Paper 1(Theory)	RM Paper : Core	2	4	50	50	100
(4)	23ScMatP131	RM Paper 2 (Practical)	RM Paper : Discrete Mathematics	4				
OJT/FP								
RP								
Total				34	22			550

Semester 2 (First Year) Level 6

Cours e Type	Course Code	Course	Course / Paper Title	Hours / We ek	Credit	CI A	ESE	Total
Major Mandatory (4 + 4 + 4	23ScMatP211	Major Paper 1(Theory)	Partial Differential Equations	4	4	50	50	100
+2)	23ScMatP212	Major Paper 2(Theory)	Rings and Modules	4	4	50	50	100
	23ScMatP213	Major Paper 3(Theory)	General Topology	4	4	50	50	100
	23ScMatP214	Major Paper 4(Practical)	Lab Course on 23ScMatP211, 23ScMatP212 & 23ScMatP213	4	2	25	25	50
Major Electives (4)	23ScMatP221	Major Elective 1 (Theory + Practical)	Numerical Analysis (T+P)	2		50	50	100
					4			
	23ScMatP222	Major Elective 2 (Theory + Practical)	C++ and Data Structures (T+P)	2				
RM				4				
OJT/FP (4)	23ScMatP24 1		On Job Training	8	4			
RP								
Total				36	22			

Semester 3 (Second Year) Level 6.5

Cours e Type	Course Code	Course	Course / Paper Title	Hours / Week	Credit	CIA	ES E	Total
Major Mandatory (4+4+4	23ScMatP311	Major Paper 1(Theory)	Measure and Integration	4	4	50	50	100
+2)	23ScMatP31 2	Major Paper 2(Theory)	Field Theory	4	4	50	50	100
	23ScMatP31 3	Major Paper 3(Theory)	Functional Analysis	4	4	50	50	100
	23ScMatP31 4	Major Paper 4(Practical)	Lab Course on 23ScMatP311, 23ScMatP312 & 23ScMatP313	4	2	25	25	50
Major Electives (4)	23ScMatP32 1	Major Elective 1 (Theory + Practical)	Mathematical Statistics and Probability (T + P)	4	4	50	50	100
	23ScMatP31 2	Major Elective 2 (Theory + Practical)	Python Programming Language (T + P)	2				
RM								
OJT/FP								
RP (4)	23ScMatP35 1		Research Project- I	8	4			
Total				36	22			

Semester 4 (Second Year) Level 6.5

Cours e Type	Course Code	Course	Course / Paper Title	Hours / Week	Credit	CIA	ES E	Total
	23ScMatP411	Major Paper 1(Theory)	Advanced Calculus	4	4	50	50	100
Major Mandatory (4+4+4)	23ScMatP412	Major Paper 2(Theory)	Applied Combinatorics	4	4	50	50	100
	23ScMatP413	Major Paper 3(Theory)	Number Theory	4	4	50	50	100
		Major Elective 1	Computational	2				
Major	23ScMatP421	(Theory +Practical)	Geometry (T+P)	4	4	50	50	100
Electives (4)		Major Elective 2	Data Mining with R	2				
	23ScMatP422	(Theory +Practical)	Package (T+P)	4				
RM								
OJT/FP								
RP (6)	23ScMatP451		Research Project-II	12	6			
Total				36	22			

OE : Open Elective

AEC: Ability Enhancement Course

VEC: value Education Courses CC: Co-Curricular Courses IKS: Indian Knowledge System

OJT : On Job Training FP : Field Project

VSC : Vocational Skill Courses

CEP: Community Engagement Project

Modern College of Arts, Science and Commerce (Autonomous), Shivajinagar, Pune - 5

PG Part 1 Year of M.Sc. Mathematics (Semester-I) (2023 course under NEP 2020)

Course Code: 23ScMatP111

Course Name: Linear Algebra

Teaching Scheme: TH: 4 Hours/Week Credits: 4

Examination Scheme: CIE: 50 Marks End-Sem: 50 Marks

Prerequisites: Vector Spaces, Basis and Dimension, Linear Transformations, Inner product.

Course Objectives: To Study

• Basis and dimension of a vector spaces

- Independence and basis of a vector spaces
- Matrix of a linear transforms
- Canonical forms
- Bilinear forms

Course Outcomes:

On completion of the course, student will be able to

- Apply concept of a vector spaces in Quantum Mechanics
- Find matrix of bilinear, Quadratic and Hermitian forms
- Generate complex shapes from basic shapes such as triangles, quadrilateral etc. using linear transformations
- Partition set of square matrices with complex coefficient using Jordan canonical forms

Unit 1	Vector Spaces	18 lectures
	 Definitions and Examples Subspaces Basis and Dimension Linear transformations Quotient spaces Direct sum The matrix of linear transformation 	
Unit 2	Canonical Forms	12 lectures
	 Eigenvalues and eigenvectors The minimal polynomial Diagonalization and triangularization of a matrix The Jordan canonical form 	

Unit 3	Inner Product Spaces	15 lectures
	 Inner product Orthogonality The adjoint of linear transformation Unitory operator Self adjoint and normal operator 	
Unit 4	Bilinear Forms	15 lectures
	 Definition and examples Classification of bilinear forms Quadratic forms Hermitian forms Euclidean vector space Canonical representation of unitary operator Orthogonality 	
	TOTAL	60 lectures

- 1. Linear Algebra by Vivek Sahay, Narosa Publishing House (2nd edition), 2013.
- 2. First Course in Linear Algebra by P. B. Bhattacharya, New Age International Publishers, 2005.
- 3. Beginning Linear Algebra by Seymour Lipscutz, Schaum's outline, McGraw Hill(4th edition), 2009.
- 4. An Introduction to Linear Algebra by V. Krishnamurthy, East-West Press, 1997.

Modern College of Arts, Science and Commerce (Autonomous), Shivajinagar, Pune - 5

PG Part 1 Year of M.Sc. Mathematics (Semester-I) (2023 course under NEP 2020)

Course Code: 23ScMatP112

Course Name: Group Theory

Teaching Scheme: TH: 4 Hours/Week Credits: 4

Examination Scheme: CIE: 50 Marks End-Sem: 50 Marks

Prerequisites: Basic group theory, Cosets, Normal subgroups

Course Objectives:- To Study

• Cyclic groups, Permutation groups

• Homomorphism and Isomorphism of groups

• Structure theory, Fundamental theorem of finite abelian groups

• Sylow theory

• Simple groups

Course Outcomes:

On completion of the course, student will be able to

- Know the applications of cyclic groups in music theory, flowers, etc.
- Apply theory of groups in chemistry and biology
- Apply sylow theory to find subgroups of prime order

Unit 1	Cyclic Groups	10 lectures
	 Cyclic Groups Properties of Cyclic Groups Classification of Subgroups of Cyclic Groups. Cosets and Lagranges theorem 	
Unit 2	Permutation Groups	8 lectures
	Permutation GroupsProperties of Permutation GroupsCycle Notation	
Unit 3	Group Homomorphism and Isomorphism	12 lectures
	 Homomorphism and Isomorphism of Groups Properties of Homomorphism, Isomorphism and Automorphism The First Isomorphism Theorem Cayley's Theorem 	

Unit 4	External Direct Products and Internal Direct Products	14 lectures
	 External Direct Product, Internal Direct Product Properties of External Direct Product and Internal Direct Product Normal Subgroups and Factor Groups Applications of Factor Groups The Fundamental Theorem of Finite Abelian Group 	
Unit 5	Sylow Theorems	8 lectures
	 Conjugacy Classes The Class Equation Probability that Two Elements Commute The Sylow Theorems Application of Sylow Theorems 	
Unit 6	Finite Simple Groups	8 lectures
	Non simplicity testsThe simplicity of alternating group	
	TOTAL	60 lectures

- 1. Contemporary Abstract Algebra by Joseph Gallian, Narosa Publishing House (4th edition), 1999.
- 2. Topics in Algebra by I. N. Herstein, John Wiley and Sons (2nd edition), 1975.
- 3. Abstract Algebra by Dummit and Foote, Wiley (3rd edition), 2003.
- 4. A First Course in Abstract Algebra by J. B. Fraleigh, Pearson (7th edition), 2008.

Modern College of Arts, Science and Commerce,

Shivajinagar, Pune - 5

PG Part 1 Year of M.Sc. Mathematics (Semester-I) (2023 Course under NEP 2020)

Course Code: 23ScMatP113

Course Name: Graph Theory

Teaching Scheme: TH: 4 Hours/Week Credits: 4

Examination Scheme: CIE: 50 Marks End-Sem: 50 Marks

Prerequisites:

• Sets and Relations, Functions and Matrices

Course Objectives: To Study

- Eulerian graphs, Hamiltonion graphs, etc.
- Connectivity of graphs
- Trees and Planarity of graphs
- Colouring of graphs
- Energy of graphs
- Shortest path problem, Matching problem, Network flow

Course Outcomes:

On completion of the course, student will be able to-

- Apply shortest path algorithm to find the shortest Eulerian and Hamiltonian path and this is useful to painters, garbage collectors, airplane pilots and all world navigators
- Apply vertex colouring in scheduling, routing, register allocation, etc.
- Apply energy of graphs in complex system design, image analysis and processing
- Use tournament graphs in fault-tolerant routing and distributed computing
- Solve the transportation and communication problems using Network flow
- Understands the algorithm of searching trees like Depth first search and Breadth first search

Unit 1	Graphs	12 lectures
	Graphs, Types of graphs, Operations on graphs	
	Isomorphism of graphs	
	Adjacency and degrees	
	Complement of graphs	
	Vertex and edge deletion	
	Matrix representation	
	Energy of graphs	

Unit 2	Paths, Cycles and Tournaments	14 lectures
	 Connectivity of graphs Eulerian graphs and digraphs Hamiltonian graphs and digraphs Tournaments Shortest path problem Chinese postman problem Travelling salesman problem 	
Unit 3	Trees, Planarity of graphs	14 lectures
	 Trees The enumeration of trees Minimum connector problem Searching trees: Depth-first search, Breadth-first search Planar graphs Euler's formula for planar graphs 	
Unit 4	The colouring of graphs	10 lectures
	 Colouring vertices and edges Chromatic polynomials The proof of Brook's theorem The colouring of maps Applications of vertex colouring 	
Unit 5	Matching and Networks	10 lectures
	 Hall's marriage theorem Transversal theory Menger's theorem Network flows 	
	TOTAL	60 lectures

- 1. Introduction to graph theory by R. J. Wilson, Pearson (Third edition), 2003.
- 2. A first look at Graph Theory by John Clarke and D. A. Holton, Allied Publisher, 1991.
- 3. Graph Theory by Harary, Narosa Publishers, 1989.
- 4. Graph Theory by Narsingh Deo, Dover publications, 1974

Modern College of Arts, Science and Commerce (Autonomous), Shivajinagar, Pune - 5

PG Part 1 Year of M.Sc. Mathematics (Semester-I) (2023 course under NEP 2020)

Course Code: 23ScMatP114

Course Name: Lab Course on 23ScMatP111, 23ScMatP112 & 23ScMatP113

Teaching Scheme: PR: 4 Hours/Week Credits: 2

Examination Scheme: CIE: 25 Marks End-Sem: 25 Marks

Prerequisite Courses:

- Linear Algebra
- Group Theory
- Graph Theory

Course Objectives:- To Study

- Basis and dimension of vector spaces
- Matrix of linear transforms, Canonical forms
- Cyclic groups, Permutation groups, Homomorphism and Isomorphism of groups
- Structure theory, Sylow theory
- Eulerian graphs, Hamiltonion graphs, Connectivity of graphs, Trees and Planarity of graphs
- Colouring of graphs, Energy of graphs
- Shortest path problem, Matching problem, Network flow

Course Outcomes:

On completion of the course, student will be able to

- Apply concept of vector spaces in Quantum Mechanics
- Partition a set of square matrices with complex coefficient using Jordan canonical forms
- Know the applications of cyclic groups in music theory, flowers, etc.
- Apply shortest path algorithm to find the shortest Eulerian and Hamiltonian path and this is useful to painters, garbage collectors, airplane pilots and all world navigators
- Apply energy of graphs in complex system design, image analysis and processing

Course Contents:

Practical 1: Vector Space

Practical 2: Linear Mapping

Practical 3: Eigenvalues and Eigenvectors

Practical 4: Jordan Canonical form

Practical 5: Bilinear form

Practical 6: Cyclic groups

Practical 7: Permutation groups

Practical 8: Isomorphism of groups

Practical 9: Normal subgroups

Practical 10: Sylow Theory

Practical 11: Energy of graphs

Practical 12: Shortest path problems

Practical 13: Trees

Practical 14: Colouring of graphs

Practical 15: Matching and Networks

Reference Books:

1. Linear Algebra by Vivek Sahai, Narosa Publishing House(2nd edition), 2013.

- 2. Beginning Linear Algebra by Seymour Lipscutz, Schaum's outline, McGraw Hill(4th edition), 2009.
- 3. Contemporary Abstract Algebra by Joseph Gallian, Narosa Publishing House(4th edition), 1999.
- 4. Topics in Algebra by I. N. Herstein, John Wiley and Sons(2nd edition), 1975.
- 5. Introduction to graph theory by R. J. Wilson, Pearson (Third edition), 2003.
- 6. A first look at Graph Theory by John Clarke and D. A. Holton, Allied Publisher, 1991.

Modern College of Arts, Science and Commerce (Autonomous),

Shivajinagar, Pune - 5

PG Part 1 Year of M.Sc. Mathematics (Semester-I) (2023 course under NEP 2020)

Course Code: 23ScMatP121

Course Name: Ordinary Differential Equations

Teaching Scheme: TH: 2 Hours/Week Credits: 2

Examination Scheme: CIE: 25 Marks End-Sem: 25 Marks

Prerequisites: Derivative, Integration, Differential equation of first order and first degree

Course Objectives: To study

• Second order linear differential equations

- Qualitative properties of solutions of differential equations
- Power series solutions of linear differential equations of order up to two
- System of first order and first degree differential equations
- Non linear differential equations
- Existence and uniqueness of solutions of differential equations

Course Outcomes:

On completion of the course, student will be able to

- To calculate the movement or flow of electricity, Motion of an object
- To check the growth of diseases in graphical representation
- To ensure the existence of a unique solution of higher-order ordinary differential equations and system of differential equations

Unit 1	Second order linear equations	5 lectures
	 The general solution of Homogeneous equation with constant coefficients Order of reduction The method of undetermined coefficients The method of variation of parameters 	
Unit 2	Power series solutions	6 lectures
	 Review of power series Series solutions of first order equations Series solution of second order linear equations Ordinary points and regular singular points Gauss hyper geometric equations 	

	The point at infinity	
Unit 3	Systems of first order equations	5 lectures
	 System of differential equations Linear systems of differential equations Homogeneous linear systems with constant coefficients Non linear systems Volterra's Prey-Predator equations 	
Unit 4	Non-linear equations	6 lectures
	 Autonomous systems Critical points Stability Liapunov's direct method Non linear mechanics Conservative system 	
Unit 5	The existence and uniqueness of solutions	4 lectures
	 The method of successive approximations Picard's Theorem Solution of second order initial value problem using system of first order equations 	
Unit 6	Qualitative properties of solutions	4 lectures
	 Sturm separation theorem Normal form Standard form Sturm's comparison theorem 	
	TOTAL	30 lectures

- 1. Differential equations with applications and historical notes by G. F. Simmons, McGraw Hill Education (India) Private Limited, 1991.
- 2. An introduction to differential equations and their applications by Stanley J. Farlow, Doven Publication, 2006.
- 3. Ordinary and partial differential equations by M. D. Raisinghania, S. Chand, 2008.
- 4. 500 Examples and Problems of Applied Differential Equations by Ravi Agarwal, Springer, 2019.
- 5. A Textbook on Ordinary Differential Equations by Shair Ahamd, Springer(2nd Edition), 2015.

Modern College of Arts, Science and Commerce (Autonomous), Shivajinagar, Pune - 5

PG Part 1 Year of M.Sc. Mathematics (Semester-I) (2023 course under NEP 2020)

Course Code: 23ScMatP121

Course Name: Practicals on Ordinary Differential Equations

Teaching Scheme: PR: 4 Hours/Week Credits: 2

Examination Scheme: CIE: 25 Marks End-Sem: 25 Marks

Prerequisite Course: Ordinary differential equations

Course Objectives: To study

• Second order linear differential equations

- The importance of numerical methods in solving ordinary differential equations
- Power series solutions of linear differential equations up to order two
- Differential equations using variation of parameters
- Non linear system of ordinary differential equations
- Existence and uniqueness of solutions of differential equations
- Critical points and stability using Geogebra

Course Outcomes:

On completion of the course, student will be able to

- To solve general solutions of homogeneous and non-homogeneous differential equations
- Find solutions of differential equations using power series
- Find critical points of differential equations and check for stability of differential equations
- Find the complete solution of differential equation with constant coefficients by variation of parameters

Course Contents:

Practical 1: Homogenous differential equation

Practical 2: Method of undetermined coefficients

Practical 3: Method of variation of parameters

Practical 4: Power series solution

Practical 5: Singularity and point at infinity

Practical 6: Gauss hyper geometric equations

Practical 7: Homogeneous linear system with constant coefficient

Practical 8: Non-linear systems

Practical 9: Autonomous systems of non-linear equations

Practical 10: Critical points and stability

Practical 11: Non linear mechanics and Conservative systems

Practical 12: Method of successive approximation

Practical 13: Picard's theorem

Practical 14: Strum separation theorem

Practical 15: Strum comparison theorem

- 1. Differential equations with applications and historical notes by G. F. Simmons, McGraw Hill Education (India) Private Limited, 1991.
- 2. An introduction to differential equations and their applications by Stanley J. Farlow, Doven Publication, 2006.
- 3. Ordinary and partial differential equations by Dr. M. D. Raisinghania, S. Chand, 2008.
- 4. 500 Examples and Problems of Applied Differential Equations by Ravi Agrawal, Springer, 2019.
- 5. A Textbook on Ordinary Differential Equations by Shair Ahamd, Springer(2nd Edition), 2015.

Modern College of Arts, Science and Commerce (Autonomous), Shivajinagar, Pune - 5

PG Part 1 Year of M.Sc. Mathematics (Semester-I) (2023 Course under NEP 2020)

Course Code: 23ScMatP122

Course Name: C Programming Language

Teaching Scheme: TH: 2 Hours/Week Credits: 2

Examination Scheme: CIE: 25 Marks End-Sem: 25 Marks

Prerequisites: Basic computer knowledge

Course Objectives: To study

• C fundamentals

• Operators and expressions

Data input and outputsControl statements

• Functions, arrays and pointers

Course Outcomes: On completion of the course, student will be able to design an algorithm and prepare a C program for various mathematical as well as non-mathematical problems.

Unit 1	Introductory Concepts	1 lecture
	 Introduction to Computers. Computer Characteristics. Types of Programming Languages. Introduction to C. 	
Unit 2	C Fundamentals	4 lectures
	 The C character set. Identifier and keywords. Data types, Constants. Variables and Arrays. Declarations and Expressions. Statements. Symbolic Constants. 	
Unit 3	Operators and Expressions	4 lectures
	 Arithmetic operators. Unary operators. Relational and Logical Operators. Assignment Operators. The Conditional Operator. Library Functions. 	
Unit 4	Data Input and Outputs	4 lectures

	Preliminaries.	
	Single character Input – The getchar()	
	function.	
	Single character Output – The putchar()	
	function.	
	• Entering Input Data – The scanf()	
	function.	
	Writing Output Data – The printf()	
	function.	
	The gets and puts Functions.	
Unit 5	Preparing and Running a Complete C	2 lectures
	Program	
	Planning and Writing a C Program.	
	Compiling and Executing the Program.	
	Error Diagnostics.	
Unit 6	Control Statements	4 lectures
	Preliminaries.	
	• Statements: if – else, while, do-while, for.	
	Nested control Structures.	
	Statements: switch, break and continue.	
	The comma operator.	
Unit 7	Functions	3 lectures
	Defining a Function.	
	Accessing a Function.	
	Function Prototypes.	
	Passing Arguments to a Function.	
Ī	Recursion.	
Unit 8		3 lectures
Unit 8	Recursion. Arrays	3 lectures
Unit 8	Recursion. Arrays	3 lectures
Unit 8	 Recursion. Arrays Defining and processing an Array. 	3 lectures
Unit 8	 Recursion. Arrays Defining and processing an Array. Passing Arrays to Functions. 	3 lectures
Unit 8	 Recursion. Arrays Defining and processing an Array. Passing Arrays to Functions. Multidimensional Arrays. 	3 lectures
Unit 8 Unit 9	 Recursion. Arrays Defining and processing an Array. Passing Arrays to Functions. Multidimensional Arrays. Arrays and Strings. 	3 lectures 5 lectures
	 Recursion. Arrays Defining and processing an Array. Passing Arrays to Functions. Multidimensional Arrays. Arrays and Strings. Structures 	
	 Recursion. Arrays Defining and processing an Array. Passing Arrays to Functions. Multidimensional Arrays. Arrays and Strings. Structures Pointers 	
	 Recursion. Arrays Defining and processing an Array. Passing Arrays to Functions. Multidimensional Arrays. Arrays and Strings. Structures Pointers Pointer Declarations. 	
	 Recursion. Arrays Defining and processing an Array. Passing Arrays to Functions. Multidimensional Arrays. Arrays and Strings. Structures Pointers Pointer Declarations. Passing Pointers to Functions. 	
	 Recursion. Arrays Defining and processing an Array. Passing Arrays to Functions. Multidimensional Arrays. Arrays and Strings. Structures Pointers Pointer Declarations. Passing Pointers to Functions. Pointer and One Dimensional Array. 	
	 Recursion. Arrays Defining and processing an Array. Passing Arrays to Functions. Multidimensional Arrays. Arrays and Strings. Structures Pointers Pointer Declarations. Passing Pointers to Functions. Pointer and One Dimensional Array. Dynamic Memory Allocation. 	
	 Recursion. Arrays Defining and processing an Array. Passing Arrays to Functions. Multidimensional Arrays. Arrays and Strings. Structures Pointers Pointer Declarations. Passing Pointers to Functions. Pointer and One Dimensional Array. Dynamic Memory Allocation. Operations on Pointer. 	
	 Recursion. Arrays Defining and processing an Array. Passing Arrays to Functions. Multidimensional Arrays. Arrays and Strings. Structures Pointers Pointer Declarations. Passing Pointers to Functions. Pointer and One Dimensional Array. Dynamic Memory Allocation. Operations on Pointer. Pointers and Multidimensional Arrays. 	

- 1. Schaum's Outline of Programming with C by Byron Gottfried, McGraw-Hill Publishing Co. (7th edition), 2007
- 2. Let Us C by Yashavant Kanetkar, BPB Publications(12th edition), 2006. https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxwcm9ncmFtbWVyc3BvaW50MDA3fGd4OjI4ZjJhNTQ0YmY2MzE5MDE (04/07/2023).
- 3. Programming in C: A Practical approach by Ajay Mittal, Pearson Education India, 2010.
- 4. The C Programming Language by Brian W. Kernighan and Dennis M. Ritchie, 1978.

Modern College of Arts, Science and Commerce (Autonomous), Shivajinagar, Pune - 5

PG Part 1 Year of M.Sc. Mathematics (Semester-I) (2023 course under NEP 2020)

Course Code: 23ScMatP122

Course Name: Practicals on C Programming Language

Teaching Scheme: PR: 4 Hours/Week Credits: 2

Examination Scheme: CIE: 25 Marks End-Sem: 25 Marks

Prerequisite Course: C- Programming language

Course Objectives: To study the algorithms and prepare C programs for various mathematical

as well as non mathematical problems.

Course Outcomes:

On completion of the course, student will be able to design an algorithm and prepare a C program for various mathematical problems such as Taylor's series, Operation on matrices, Numerical integration etc. as well as some non-mathematical problems.

Course Contents:

Practical 1: Simple programs

Practical 2: Validity of date

Practical 3: Fibonacci sequence

Practical 4: Palindromes

Practical 5: Patterns and Pascal's triangle

Practical 6: Prime numbers and perfect numbers

Practical 7: Average of n numbers

Practical 8: Sorting an array

Practical 9: Roots of quadratic equation

Practical 10: Taylor's series

Practical 11: Evaluation of definite integrals

Practical 12: Operation on matrices

Practical 13: Inverse of a matrix

Practical 14: Tower of Hanoi

Practical 15: Customer records

- 1. Schaum's Outline of Programming with C by Byron Gottfried, McGraw-Hill Publishing Co. (7th edition), 2007
- 2. Let Us C by Yashavant Kanetkar, BPB Publications(12th edition), 2006. https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxwcm9ncmFtbWVyc3BvaW50MDA3fGd4OjI4ZjJhNTQ0YmY2MzE5MDE (04/07/2023).
- 3. Programming in C: A Practical approach by Ajay Mittal, Pearson Education India, 2010.
- 4. The C Programming Language by Brian W. Kernighan and Dennis M. Ritchie, 1978.

Modern College of Arts, Science and Commerce (Autonomous),

Shivajinagar, Pune - 5

PG Part 1 Year of M.Sc. Mathematics (Semester-I) (2023 course under NEP 2020)

Course Code: 23ScMatP131

Course Name: Discrete Mathematics

Teaching Scheme: PR: 4Hours/Week Credits: 2

Examination Scheme: CIE: 25 Marks End-Sem: 25 Marks

Prerequisites: Sets, Matrices, Basic Algebra, Vertex and edge deletion, Connectivity of graph.

Course Objectives: To Study

• Homomorphism and isomorphism of lattices.

- Counting of posets and lattices.
- Distributive and modular lattices.
- Path matrix and non-singular trees.
- Energy of graphs.

Course Outcomes:

On completion of the course, student will be able to

- Posets and lattices on given number of vertices.
- Characterize distributive and modular lattices.
- Find eigenvalues and energy of a given graph.

Course Contents:

Practical 1: Lattices and Hasse diagrams

Practical 2: Counting of Posets and Lattices

Practical 3: Some Algebraic concepts

Practical 4: Polynomials, Identities and Inequalities

Practical 5: Characterization Theorem

Practical 6: Representation Theorem

Practical 7: Distributivity

Practical 8: Modularity

Practical 9: Congruence lattices

Practical 10: Path matrix

Practical 11: Generalized Inverse

Practical 12: Spectrum of graph

Practical 13: Matrix-tree theorem

Practical 14: Non-singular trees

Practical 15: Regular graphs

- 1. General Lattice Theory by George Gratzer, Birkhauser, Second Edition, 1998.
- 2. A first look at Graph Theory by John Clark and D. A. Holton, Allied Publishers Ltd., 1991.
- 3. Graph Theory by Harary, Narosa Publishers, New Delhi, 1989.
- 4. Graphs and Matrices by R. B. Bapat, Hindustan Book Agency, Second Edition, 2014.
- 5. Algebraic Graph Theory by Norman Biigs, Cambridge University Press, 1993.

Modern College of Arts, Science and Commerce (Autonomous), Shivajinagar, Pune - 5

PG Part 1 Year of M.Sc. Mathematics (Semester-II) (2023 Course under NEP 2020)

Course Code: 23ScMatP211

Course Name: Partial Differential Equations

Teaching Scheme: TH: 4 Hours/Week Credits: 4

Examination Scheme: CIE: 50 Marks End-Sem: 50 Marks

Prerequisites: Curves and surfaces, Continuity, Integration, Partial derivative,

Systems of differential equations.

Course Objectives: To study

• First and second order linear partial differential equations

• Heat and wave equations

- Boundary value problems
- Heat conduction problems
- Cauchy problem

Course Outcomes:

On completion of the course, student will be able to

- Solve first and second order linear partial differential equations
- Solve heat and wave equations
- Solve Laplace equations
- Solve Cauchy problem

Unit 1	First order partial differential equations	20 lectures
	Classification of integrals	
	 Linear equations of first order 	
	 Pfaffian differential equations 	
	Compatible systems	
	 Charpit's method 	
	 Jacobi's method 	
	 Integral surfaces through a given curve 	
	Quasi linear equations	
	 Non linear first order partial 	
	differential equations	
Unit 2	Second order partial differential	40 lectures
	equations	

ClassificationOne dimensional wave equation	
Laplace equation	
Boundary value problemsThe Cauchy problem	
Dirichlet and Neumann problem	
Harnack's theoremHeat conduction problem	
Duhamel's principle	
Families of equipotential surfacesKelvin's inversion theorem	
TOTAL	60 lectures

- An elementary course in Partial Differential equations by T. Amarnath, Jones and Bartlett Publishers (2nd Edition), 1997.
- 2. Elements of Partial Differential equations by I. N. Sneddon, Dover Publications, 2006.
- 3. Ordinary and partial differential equations by M. D. Raisinghania, S. Chand, 2008.
- 4. Problems on Partial Differential Equations by Maciej Borodzik, Springer, 2019.

Modern College of Arts, Science and Commerce (Autonomous), Shivajinagar, Pune - 5

PG Part 1 Year of M.Sc. Mathematics (Semester-II) (2023 Course under NEP 2020)

Course Code: 23ScMatP212

Course Name: Rings and Modules

Teaching Scheme: TH: 4 Hours/Week Credits: 4

Examination Scheme: CIE: 50 Marks End-Sem: 50 Marks

Prerequisite Courses:

• Group Theory

Vector Spaces

Course Objectives: To StudyVarious types of Rings

• Definitions and examples of Field, Integral domains and Modules

Course Outcomes:

On completion of the course, student will be able to

- Know Ring, Subring, Integral domain, Field, Ideal
- Check reduciabilty and irreduciability of polynomials
- Find number of rings up to isomorphism
- Identify modules

Unit 1	Rings	14 lectures
	 Rings, Opposite rings, Integral Domains, Fields Ring of Matrices, Boolean rings Polynomial Rings, Power series rings, Laurent series rings 	
Unit 2	Ideals	12 lectures
	 Ideals Maximal Ideal, Minimal Ideal, Prime Ideal, Principal Ideal Relation between Ideals, Integral Domains , Fields 	
Unit 3	Homomorphism and Isomorphism of Rings	12 lectures
	 Homomorphism and Isomorphism of Rings Properties of Homomorphism and 	

	Isomorphism Fundamental Theorems Endomorphism Rings Fields of Fractions Prime fields	
Unit 4	Factorization in Domains	12 lectures
	 Euclidean Domains Principal Ideal Domain Unique factorization Domain Polynomial Rings that are Unique factorization domain Irreducibility Criteria 	
Unit 5	Modules	10 lectures
	 Modules and Submodule Quotient Modules Free Modules Module Homomorphism Tortion Free Modules 	
	TOTAL	60 lectures

- 1. Introduction to Rings and Modules by C. Musili, Narosa Publishing House (2nd edition), 1994.
- 2. Algebra by Martin Isaacs, Americal Mathematical Society, 1994.
- 3. Abstract Algebra by Dummit and Foote, Wiley (3rd edition), 2003.
- Basic Abstract Algebra by Jain and Bhattacharya, Cambridge University Press (2nd edition), 1994.

Modern College of Arts, Science and Commerce (Autonomous), Shivajinagar, Pune - 5

PG Part 1 Year of M.Sc. Mathematics (Semester-II) (2023 Course under NEP 2020)

Course Code: 23ScMatP213

Course Name: General Topology

Teaching Scheme: TH: 4 Hours/Week Credits: 4

Examination Scheme: CIE: 50 Marks End-Sem: 50 Marks

Prerequisites: Sets, Cartesian products, Functions, Metric space.

Course Objectives: To Study

• Countable and uncountable sets.

- Basis and types of topology.
- Connectedness and compactness.
- Countability and separation axiom.

Course Outcomes:

On completion of the course, student will be able to

- Check countablity of sets.
- Compare the topologies.
- Check connectedness and compactness of spaces.
- Find limit points and closure of a set.
- Check normality and regularity of spaces

Unit1	Countable and Uncountable Sets	8 Lectures
	 Infinite sets The axiom of Choice Continuum hypothesis Well-ordered sets The maximum principle 	
Unit 2	Topological spaces and continuous functions	20 Lectures

	 Basis of topology Order topology Continuous functions Product topology Metric topology Quotient topology 	
Unit 3	 Connectedness and compactness Connected spaces Components and local connectedness Compact spaces Limit point compactness Local compactness One point compactness 	20 Lectures
Unit 4	 Countability and Separation Axioms The countability Axiom Separation Axiom Normal Spaces The Urysohn lemma The Urysohn metrization Theorem The Tietze extension theorem Tychnoff theorem 	12 Lectures
	TOTAL	60 Lectures

- 1. Topology by J. R. Munkres, Prentice Hall of India (Second edition), 2014.
- 2. Topology by J. Dugundji, Allyn and Bacon, Boston, 1966.
- 3. General topology by John L. Kelley, D. Van Nostrand Company, 1964.
- 4. Introduction to topology by Theodore. W. Gamelin, Dover Publications, Mineole, New York (Second edition), 1999.

Modern College of Arts, Science and Commerce (Autonomous), Shivajinagar, Pune - 5

PG Part 1 Year of M.Sc. Mathematics (Semester-II) (2023 Course under NEP 2020)

Course Code: 23ScMatP214

Course Name: Lab Course on 23ScMatP211, 23ScMatP212 & 23ScMatP213

Teaching Scheme: PR: 4 Hours/Week Credits: 2

Examination Scheme: CIE: 25 Marks End-Sem: 25 Marks

Prerequisite Courses:

• Partial Differential Equations

- Rings and Modules
- General Topology

Course Objectives:- To Study

- First and second order linear partial differential equations
- Boundary value problems, Heat conduction problem, Cauchy problem
- Various types of Rings, Definitions and examples of field, Integral domain, Principal ideal domains, Unique factorization domains and Modules
- Basis and types of topology, Countable and uncountable sets
- Connectedness and compactness, Countability and separation axiom

Course Outcomes:

On completion of the course, student will be able to

- Check reduciability and irreduciability of polynomials
- Find number of rings up to isomorphism
- Check connectedness and compactness of spaces
- Check countablity, normality and regularity of a set
- Find a solution of Cauchy problem

Course Contents:

Practical 1: Pfaffian differential equations

Practical 2: Jacobi's and Chaprit's Method

Practical 3: Integral surfaces through a given curve

Practical 4: One dimensional wave equations

Practical 5: Laplace equations

Practical 6: Rings

Practical 7: Ideals

Practical 8: Isomorphism of rings

Practical 9: Factorization in domains

Practical 10: Modules

Practical 11: Topological spaces

Practical 12: Comparison of topologies

Practical 13: Separation axioms

Practical 14: Connected and compact spaces

Practical 15: Countability

- An elementary course in Partial Differential equations by T. Amarnath, Jones and Bartlett Publishers(2nd Edition), 1997.
- 2. Ordinary and partial differential equations by M. D. Raisinghania, S. Chand, 2008.
- 3. Introduction to Rings and Modules by C. Musili, Narosa publishing House (2nd edition), 1994.
- 4. Topology by J. R. Munkres, Prentice Hall of India (Second edition), 2014.

Modern College of Arts, Science and Commerce(Autonomous), Shivajinagar, Pune - 5

PG Part 1 Year of M.Sc (Semester-II) (2023 Course under NEP 2020)

Course Code: 23ScMatP221

Course Name: Numerical Analysis

Teaching Scheme: TH: 2 Hours/Week Credits: 2

Examination Scheme: CIE: 25 Marks End-Sem: 25 Marks

Prerequisites: Roots of equations, System of linear and nonlinear equations,

Integration and Differentiation, Eigen values and Eigen vectors of a matrix.

Course Objectives: To Study

• Root finding methods

- System of linear and nonlinear equations
- Numerical eigenvalues and eigenvectors
- Numerical differentiation and integration
- Initial value problems of ordinary differential equations

Course Outcomes:

On completion of the course, student will be able to

- Find roots of an equation
- Find solution of linear and nonlinear system of equations
- Find numerical eigenvalues and eigenvectors of matrix using numerical methods
- Find numerical differentiation and integration using Lagrange's interpolating polynomial
- Solve initial value problems of ordinary differential equations

Unit 1	Preliminaries	4 lectures
	ConvergenceFloating Point Number SystemFloating Point Arithmatic	
Unit 2	Root Finding Methods	4 lectures
	 Fixed Point Iteration Scheme Newton's Method Secant Method Accelerating Convergenc 	
Unit 3	System of Equations	8 lectures

	 Formation of System of Equations Gaussian Elimination Pivoting Strategies Error Estimates and Condition Number LU decomposition Direct Factorization Iterative Techniques for Linear Systems System of non-linear equations 	
Unit 4	Eigenvalues and Eigenvectors	4 lectures
	 The Power Method The Inverse Power Method Reduction to Symmetric Tridiagonal form 	
Unit 5	Differentiation and Integration	6 lectures
	 Numerical differentiation using Lagrange's Interpolating Polynomial Numerical Integration Newton's Cotes Quadrature Composite Newton's Cotes Quadrature 	
Unit 6	Initial Value Problems of Ordinary Differential Equation	4 lectures
	Euler's MethodRunge-Kutta MethodsMultistep Methods	
	TOTAL	30 lectures

- 1. Friendly introduction to numerical analysis by Brian Bradie, Prentice Hall, 2007.
- 2. An introduction to numerical analysis by K.E. Atkinson, Wiley publication(2nd edition), 1988.
- 3. Numerical Analysis by Walter Gautschi, Birkhouser (2nd edition), 2012.
- 4. An introduction to numerical analysis, J. Stoer and R. Bulirsch, Springer Science+, 1975.

Modern College of Arts, Science and Commerce (Autonomous), Shivajinagar, Pune - 5

PG Part 1 Year of M.Sc. Mathematics (Semester-II) (2023 Course under NEP 2020)

Course Code: 23ScMatP221

Course Name: Practicals on Numerical Analysis

Teaching Scheme: PR: 4 Hours/Week Credits: 2

Examination Scheme: CIE: 25 Marks End-Sem: 25 Marks

Prerequisite Courses: Numerical Analysis, C programming language

Course Objectives: To Study

• Root finding methods using C programming language

• System of linear and nonlinear equations.

• Numerical eigenvalues and eigenvectors of matrix using C programming language

• Numerical differentiation and integration using C programming language

• Initial value problems of ordinary differential equations.

Course Outcomes:

On completion of the course, student will be able to

- Find roots of an equation using C programming language
- Find solution of linear and nonlinear system of equations
- Find numerical eigenvalues and eigenvectors of matrix using C programming language
- Find numerical differentiation and integration using Lagrange's interpolating polynomial
- Solve initial value problems of ordinary differential equations.

Course Contents:

Practical 1: Order and rate of convergence

Practical 2: Newton's method

Practical 3: Secant method

Practical 4: Accelerating convergence

Practical 5: Gaussian Elimination

Practical 6: Gaussian Elimination with pivoting strategies

Practical 7: Solving linear system using LU decomposition

Practical 8: Jacobi method

Practical 9: Gauss-Seidel method

Practical 10: SOR method

Practical 11: Power method

Practical 12: Numerical Differentiation

Practical 13: Numerical integration

Practical 14: Euler's method

Practical 15: Runge-Kutta method

Reference Books:

1. Numerical methods and computer programming by A. Khandelwal, Alpha Science Publication, 2012.

- 2. Programming and computer analysis by N. Datta, Universities Press, 2001.
- 3. Numerical methods and computer programming by C. V. Deshpande, 2019.
- 4. Friendly Introduction to numerical analysis by Brian Bradie, Prentice hall, 2007.
- 5. Computer oriented numerical methods by V. Rajaraman, PHI (Third edition), 2009.

Modern College of Arts, Science and Commerce (Autonomous), Shivajinagar, Pune - 5

PG Part 1 Year of M.Sc. Mathematics (Semester-II) (2023 course under NEP 2020)

Course Code: 23ScMatP222

Course Name: C++ Programming and Data structures

Teaching Scheme: TH: 2 Hours/Week Credits: 2

Examination Scheme: CIE: 25 Marks End-Sem: 25 Marks

Prerequisites: Knowledge of C programming language

Course Objectives:

• To learn principles of object oriented programming

• To use the object-oriented paradigm in program design.

• To learn the symmetric way of solving problem

• To understand the different methods of organizing large amount of data

Course Outcomes:

On completion of the course, student will be able to

- Apply principles of object oriented programming
- Design and develop applications such as games, banking Applications, internet Explorer.
- To use well-organized data structures in solving various problems such as arrays, stack, queue

Unit 1	Object Oriented Programming Concepts	5 lectures
	 Procedure-oriented programming Vs Object-oriented programming The basic anatomy of C++ program Compiling, linking and running a C++ program Classes, objects and abstraction Inheritance, polymorphism and data binding Encapsulation and message passing 	
Unit 2	Programming in C++	6 lectures
	 Data types New operators and keywords Type casting in C++ Reference Variables Classes and access specifiers Defining data members and member functions 	

	 Arrays and array of object Usage of namespace, managing console I/O, Usage of manipulators 	
Unit 3	Constructors , Destructors, Function and Operator overloading	5 lectures
	 Static members call by reference, return by reference Inline function Friend function Function overloading Constructor and Destructor and their types 	
Unit 4	Introduction to Data Structures and Algorithm Analysis	5 lectures
	 Introduction to data and information, Data type, Data object, ADT, Data Structure Algorithm analysis Space and time complexity, Graphical understanding of the relation between different functions of n, examples of linear, logarithmic, quadratic loops Best, Worst, Average case analysis, Asymptotic notations (Big O, Omega Ω, Theta Θ), Problems on time complexity calculation. 	
Unit 5	Array and Linked List	5lectures
	 ADT of array, Operations Array applications - Searching List as a Data Structure, differences with array. Dynamic implementation of Linked List, internal and external pointers Types of Linked List - Singly, Doubly, Circular 	
Unit 6	Stack and Queue	4 lectures
	 Introduction Operations: init(), push(), pop(), isEmpty(), isFull(), peek(), Time complexity of operations. Operations: init(), enqueue (), dequeue (), isEmpty(), isFull(), peek(), Time complexity of operations, Differences with stack. Implementation - Static and Dynamic with comparison 	
	TOTAL :	30 lectures

- 1. Object Oriented Programming (C++) by Balaguruswamy, McGraw Hill Education (Seventh edition), 1994.
- 2. C++ How to program by Deitel, Pearson education (4th Edition), 1996.
- 3. Classic Data Structures by D. Samanta, Prentice Hall India Pvt. Ltd. 2009.
- 4. Data Structures using C and C++ by Yedidyah Langsam, Moshe J. Augenstein, Aaron M., Tenenbaum, Pearson Education (5th Edition), 1990.
- 5. Algorithms and Data Structures by Niklaus Wirth, Pearson Education, 2004.

Modern College of Arts, Science and Commerce (Autonomous), Shivajinagar, Pune - 5

PG Part 1 Year of M.Sc. Mathematics (Semester-II) (2023 Course under NEP 2020)

Course Code: 23ScMatP222

Course Name: Practicals on C++ and Data Structures

Teaching Scheme: PR: 4 Hours/Week Credits: 2

Examination Scheme: CIE: 25 Marks End-Sem: 25 Marks

Prerequisites Course: C++ and Data Structure

Course Objectives:

• To use the object- oriented paradigm in program design

• To study advantage of C++ over C language

• To study linear data structures

• To efficiently implement solutions for specific problems

Course Outcomes:

On completion of the course, student will be able to

• Design and develop applications using object oriented programming language C++

• Implementing algorithms to solve problems using appropriate data structure

Course Contents:

Practical 1: Greatest common divisors

Practical 2: Multiplication table

Practical 3: Conversation of numbers

Practical 4: Power of a number

Practical 5: Operation on matrices

Practical 6: Test and generate perfect number

Practical 7: Matrix inversion method

Practical 8: Bubble sort

Practical 9: Selection sort

Practical 10: Binary search

Practical 11: Singly linked list

Practical 12: Double linked list

Practical 13: Merge two sorted lists

Practical 14: Infix and postfix expression

Practical 15: Implementation

- 1. Object Oriented Programming (C++) by Balaguruswamy, McGraw Hill Education (Seventh edition), 1994.
- 2. C++ How to program by Deitel, Pearson education (4th Edition), 1996.
- 3. Classic Data Structures by D. Samanta, Prentice Hall India Pvt. Ltd., 2009.
- 4. Data Structures using C and C++ by Yedidyah Langsam, Moshe J. Augenstein, Aaron M., Tenenbaum, Pearson Education (5th Edition), 1990.
- 5. Algorithms and Data Structures by Niklaus Wirth, Pearson Education, 2004.