Progressive Education Society's Modern College of Arts, Science and Commerce (Autonomous),

Shivajinagar, Pune 5

(An Autonomous College Affiliated to Savitribai Phule Pune University)

Framework of Syllabus

For

M.Sc. Zoology

(Based on NEP 2020 framework)
(To be implemented from the Academic Year 2023-2

Semester 1 (First Year)

Cour se Type	Code	Course	Course / Paper Title	Hours / Wee k	Credit	CIA	ES E	Tota l
Major Mandato ry	23ScZooP111	Major Paper 1 (Theory)	Biochemistry and Molecular Biology	4	4	50	50	100
(4+ 4+4+2)	23ScZooP112	Major Paper 2 (Theory)	Cell Biology and Developmental Biology	4	4			
	23ScZooP113	Major Paper 3 (Theory)	PracticalsLab 1(Based on all theory paper)	4	4			
	23ScZooP114	Major Paper 4 (Practical/Theory)	Freshwater Zoology	2/4	2	25	25	50
Major Electiv es (4)	23ScZooP121	Major Elective 1 (T/P)	Fundamentals of Systematics and Environmental Biology	4	4	50	50	100
	23ScZooP122	Major Elective 2 (T/P)	Fundamentals of Systematics and Aquaculture	4				
RM (4)	23ScZooP131	RM Paper 1	RM Core Paper	2	4	50	50	100
	23ScZooP131	RM Paper 2	Biological Techniques	2				
OJT(4),		_	_	_	_	_	_	_
Total				22/26/2	22	175	175	350

Semester 2 (First Year)

Cour se Type	Code	Course	Course / Paper Title	Hours / Wee k	Credit	CIA	ES E	Tota 1
Major Mandato ry	23ScZooP211	Major Paper 1 (Theory)	Metabolic Pathways and Advanced Genetics	4	4	50	50	100
(4 + 4+4+2)	23ScZooP212	Major Paper 2 (Theory)	Physiology and Endocrinology	4	4			
	23ScZooP213	Major Paper 3 (Theory)	Practicals Lab 2(based on theory subjects)	4	4			
	23ScZooP214	Major Paper 4 (Practical/Theory)	Basic Entomology and Biodiversity	2/4	2	25	25	50
Major Electiv	23ScZooP221	Major Elective 1 (T/P)	Biostatistics and Animal Biotechnology	4	4	50	50	100
es (4)	23ScZooP222	Major Elective 2 (T/P)	Biostatistics and Medical Microbiology	4				
RM (4)		_	_	_	_	-	-	_
OJT(4),	23ScZooP241	OJT	On Job Training	8	4	50	50	100

Semester 3 (Second Year)

Cour se Type	Code	Course	Course / Paper Title	Hours / Wee k	Credit	CIA	ES E	Tota 1
Major Mandato ry	23ScZooP311	Major Paper 1 (Theory)	Entomology and Insect Physiology and Biochemistry	4	4	50	50	100
(4+ 4+4+2)	23ScZooP312	Major Paper 2 (Theory)	Immunology and Histochemistry	4	4			
	23ScZooP313	Major Paper 3 (Theory)	Practicals Lab 3(Based on theory subjects)	4	4			
	23ScZooP314	Major Paper 4 (Practical/Theory)	rDNA Technology	4/2	2	25	25	50
Major Electiv	23ScZooP321	Major Elective 1 (T/P)	Bioinformatics and Genomics and Proteomics	4	4	50	50	100
es (4)	23ScZooP322	Major Elective 2 (T/P)	Bioinformatics and Parasitology	4				
RP (4)	23ScZooP352	RP	Research Project	8	4	50	50	100
OJT(4),								
Total				26/28	22	175	175	350

Semester 4 (Second Year)

Cour se Type	Code	Course	Course / Paper Title	Hours / Wee k	Credit	CIA	ES E	Tota 1
Major Mandato ry	23ScZooP411	Major Paper 1 (Theory)	Bacterial and Phage Genetics and Genetic Toxicology	4	4	50	50	100
(4+ 4+4+2)	23ScZooP412	Major Paper 2 (Theory)	Animal Tissue Culture and Mammalian Reproductive Physiology	4	4			
	23ScZooP413	Major Paper 3 (Theory)	PracticalsLab 4(based on theory subjects)	4	4			
	23ScZooP414	Major Paper 4(P/T)	Evolution	2/4	2	25	25	50
Major Electiv	23ScZooP421	Major Elective 1 (T/P)	Ecology and Animal Behaviour	4	4	50	50	100
es (4)	23ScZooP422	Major Elective 2 (T/P)	Ecology and Pest Control	4				
RP (4)	23ScZooP452	RP	Research Project	12	6	75	75	150

OJT(4),						
Total		22	22	175	175	350

OE : Open Elective AEC: Ability Enhancement Course VEC: value Education Courses

CC : Co-Curricular Courses IKS: Indian Knowledge System

OJT: On Job Training
FP: Field Project
VSC: Vocational Skill Courses

CEP: Community Engagement Project

Progressive Education Society's

Modern College of Arts, Science and Commerce,

Shivajinagar, Pune -5.

P.G. Part I Year of M.Sc. Zoology SEM I (2023 Course under NEP 2020)

Course code: : 23ScZooP111 Course Name : Biochemistry and Molecular Biology

Teaching Scheme: TH 4Hours/Week Credit - 04C

Examination Scheme: CIA: 50Marks End-Sem: 50 Marks

Course Objectives:

• To introduce basic biochemistry

- To learn significance, structures of different biomolecules
- To understand the central dogma of life
- To study different types of mutations
- To study and understand the importance of different transposable elements

Course Outcomes:

On completion of the course, student will be able to-

- Use the learnt structures to understand metabolic reactions
- Understand the interrelationship between different biomolecules
- Students shall understand the flow of genetic information
- Students shall be able to understand the differences in genomes and life processes of prokaryotes and eukaryotes.

Course Contents: Biochemistry

Unit 1	Water	2Lectures
	1.1 Structure and function	
	1.2 pH and Buffers	
	1.3 Biological Buffer System Problems and concepts related to	
	mole, molarity, normality, buffers etc.	
Unit 2	Carbohydrates	4Lectures
	2.1 Classification and Biological Significance, Chemical Structures,	
	2.2 Properties and derivatives of monosaccharides; disaccharides,	
	concept of invertose, reducing and non reducing sugars,	
	polysaccharides – structure and importance	
	2.3Disorders of carbohydrate metabolism - Diabetes mellitus,	
	glycogen storage diseases	
Unit 3	Lipids	3Lectures
	3.1 General features and Classification	
	3.2 Structure and function of major lipid subclasses.	
	3.3 Mobilization and transport of triglycerols	
	3.4 Steroid hormones and bile acids	
Unit 4	Amino acids	3Lectures
	4.1Classification – Standard and non-standard with structures	
	4.2 Properties – Optical properties, absolute configuration, Titration	
	of amino acids, calculation of pK and pI values, Absorption of U.V.	
	light.	
Unit 5	Proteins	7Lectures

	5.1 Peptide bond and its formation, Simple and conjugated proteins 5.2 Protein structure: Primary structure and itsimportance, properties of peptide bond, Ramachandran plot ii. Secondary structure-types iii. Tertiary structure: myoglobin, domains and motifs iv. Quaternary structure- haemoglobin, 5.3 Isoelectric precipitation, salting in and salting out, Denaturing conditions, Reanturation, folding by chaperons 5.4 Protein sequencing by Edman degradation and protein	
	purification 5.5 DNA binding motifs - helix turn helix, zinc	
	fingers, leucine zippers, helix loop helix	
Unit 6	Enzymes	8Lectures
	 6.1 Classification, nomenclature and properties 6.2 Enzyme kinetics, Factors affecting enzyme activity, Significance of Km and Vmax, Turnover number, significance of Kcat Lineweaver Burk plot Measures of enzyme activity 6.3 Enzyme inhibition – Reversible and irreversible inhibition with equations 6.4 Regulatory Enzymes. 6.5 Isozymes, Ribozymes, Zymogens 6.6 Biochemical diagnosis of diseases by enzyme assays - SGOT, SGPT 	
Unit 7	Vitamins and Coenzymes	3Lectures
	7.1Classification, water-soluble and fat-soluble vitamins 7.2Coenzyme forms and their significance	

Molecular Biology

Unit 1	Genome organization	3Lectures
	1.1 DNA structure and topology - Structure of chromatin, nucleosome, chromatin organization and remodeling, higher order organization, Histone and its effect on structure and function of chromatin 1.2 C value, C value paradox, Cot curves, repetitive and non-repetitive DNA sequence, Cot ½ values, Pseudogenes, Gene families.	
Unit 2	DNA damage and repair	5Lectures
	2.1Different types in DNA damages 2.2 Different DNA repair systems: Direct repair, Nucleotide excision repair, Base excision repair, mismatch repair, recombination repair, Double strand break repair, NickTranslation and SOS Repair.	
Unit 3	DNA Replication	06Lectures

	3.1 DNA replication in E. coli, Origin of replication, types of E. coli DNA polymerases, details of replication process, regulation of replication, 3.2 Different models of replication for linear and circular DNA, Eukaryotic DNA replication, multiple replicons, eukaryotic DNA polymerases, details of eukaryotic replication, connection of replication to cell cycle, Telomere synthesis, inhibitors of replication.	
Unit 4	Transcription 4.1Transcription in prokaryotes and eukaryotes, role and significance of promoter, enhancer, silencer, Transcriptional factors, mechanism of prokaryotic gene transcription, structure of RNA polymerase II, details of transcription process 4.2Post transcriptional processing: Capping, polyadenylation and Types of splicing in eukaryotes. Spliceosome assembly, RNA Editing.	06Lectures
Unit 5	Gene Expression in Prokaryotes and Eukaryotes - Translation 5.1 Protein synthesis: Genetic Code, ribosome structure, activation of aminoacids, peptide bond formation and translocation of Peptides. Termination in prokaryotes and eukaryotes 5.2 Post-translational modifications, inhibitors of protein synthesis	5Lectures
Unit 6	Mobile DNA elements 6.1 Transposable elements in bacteria, IS elements, types of transposons, replicative, non-replicative transposons, Mu transposition. Controlling elements in Tn A and Tn 10 transposition, 6.2 SINES and LINES.	3Lectures
Unit 7	Techniques in Molecular Biology 7.1Determination of gene function - Gene silencing – RNAipathway(siRNA and miRNA) 7.2DNA footprinting,	2Lectures

References

- 1. Biochemistry, 3rd Ed. (2005), Voet Donald and Voet Judith G. John, Publisher: Wiley & sons, New York.
- 2. Biochemistry 6th Ed, (2007) Berg Jeremy, Tymoczko John, StryerLubert, Publisher: W. H. Freeman, New York.
- 3. Lehninger's Principles of Biochemistry, 4th edition, (2005) Nelson D. L. and Cox M. M. W. H. Freeman & Co. NY.
- 4. Biochemical Calculations, 2nd Ed., (1997) Segel Irvin H., Publisher: John Wiley and Sons, New York.
- 5. Enzymes: Biochemistry, Biotechnology & Clinical chemistry, (2001) Palmer Trevor, Publisher: Horwood Pub. Co., England.

- 6.Genes IX, 9th edition (2008), Benjamin Lewin, Publisher Jones and Barlett Publishers Inc.
- 7. Molecular Biology of the Gene, 5th Edition (2004), James D. Watson, Tania Baker,
- 8. Stephen P. Bell, Alexander Gann, Michael Levine, Richard Lodwick. Publisher –
- 9. Pearson Education, Inc. and Dorling Kindersley Publishing, Inc. 26
- 10. Molecular Biology, 4th Edition (2007), Weaver R., Publisher-McGrew Hill Science.
- 11. Molecular Biology of the Cell, 4th Edition (2004), Bruce Alberts, Dennis Bray, Julian
- 12. Lewis, Martin Raff, Keith Roberts, and James D. Publisher: Garland Publishing.
- 13. Essential Cell Biology, 2nd Edition (2003) Bruce Albert, Dennis Bray, Karen Hopkin,
- 14. Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, Peter Walter, Publisher: Garland Publishing.
- 15. Fundamentals of Molecular Biology, (2009), Pal J.K. and Saroj Ghaskadbi, Publisher: Oxford University Press.

Progressive Education Society's

Modern College of Arts, Science and Commerce,

Shivajinagar, Pune -5.

P.G. Part 1 Master of Science (2023 Course under NEP 2020)

Course Code: 23ScZooP112 Course Name: Cell Biology and Developmental Biology

Teaching Scheme: TH 4Hours/Week
Examination Scheme: CIA: 50Marks

Credit - 04C
End-Sem: 50 Marks

Prerequisite: Bachelor of Science

Course Objectives:

- To study chemical nature of the Cell.
- To study role of Macro-molecules& functions of living systems.
- To introduce students to different branches of Genetics
- To make them understand heredity principles

Course Outcomes:

On completion of the course, student will be able to-

- The students will understand the significance and importance of cell as a structural and functional chapter of life.
- The students will know the logic of the techniques used in cell biology
- The students will learn the complex functions and processes of the cell
- Students would be aware about modern implications of developmental biology by
- impartment of knowledge regarding teratogenesis, in-vitro fertilization, stem cells
- and amniocentesis techniques

Course Contents:

Unit 1	Introduction to Cell	3 Lectures
	1.1Types & Shapes of cell	
	1.2Chemical nature of cell	
	1.3Biological important molecule, Macromolecules and their role in	
	form and function of living systems.	
	1.4Stem Cells, types & characteristics	
Unit 2	Plasma membrane	3 Lectures
	2.1Structure, Fluid mosaic model	
	2.2 Intrinsic and extrinsic proteins, membrane proteins and its	
	functions.	
	2.3Hormone receptors on plasma membrane, their structure & role	
	in signal transduction.	
	2.4Mmembrane potential and synaptic transmission;	
	2.5 Glycocalyx; cell junction, cell adhesion molecules, channels	
	Active & passive transport- transport proteins, Na/K pump,	
	proton pump, exocytosis, endocytosis, facilitated diffusion.	
Unit 3	Endomembrane system:	6 Lectures
	3.1 EM Structure & functions of cell organelles (ER,Golgi	
	complex, Lysosomes, Glyoxysome, Peroxisomes	

	3.2 Protein trafficking.	
Unit 4	Mitochondria & Chloroplast	3 Lectures
Cilit i	4.1Structure & Function	3 Lectures
	4.2Protein import	
	4.3Structure & function of F1 particles	
Unit 5	Nucleus:	3 Lectures
Omt 5	5.1Ultrastructre, nuclear envelope, nuclear lamina, nuclear	3 Lectures
	pore complex, nuclear cytoplasmic interactions, nucleoporins	
	5.2 Nucleolus, Nuclear lamina and its role in cell division	
	5.3 Nuclear localization sequences	
	5.4 Mechanism of nuclear transport	
	or involved and or involved and port	
Unit 6	Cell Cycle	5 Lectures
	6.1 Cell division, Phases, Check points of cell cycle mechanism	
	of regulation (Cyclin and cyclindependent kinases) Regulation of	
	CDK cyclin activity, control by MPF	
	6.2 Role of p53, Rb	
Unit 7	Cytoskeleton:	3 Lectures
	7.1Types, Chemistry, structure and functions of microtubules,	
	microfilaments and intermediate filaments.	
	7.2Organisations, associated proteins and their role	
	7.3Inhibitors, extracellular matrix, support	
	7.4 Motility and regulation	
	7.5 Centrosomes and centrioles, cilia and flagella	
	Developmental Biology	5 Lectures
	Developmental blology	
Unit 1	Basic concepts of Developmental Biology:	2 Lectures
	1.1 Animal Model systems: Fish, Frog, Chick, Mouse and	
	1.1 Animal Wodel Systems. Tish, 110g, Chick, Wouse and	
	Drosophila, Hydra	
	Drosophila, Hydra	
Unit 2	Drosophila, Hydra 1.2 Terminologies related to Development Biology	5 Leatures
Unit 2	Drosophila, Hydra 1.2 Terminologies related to Development Biology Gametogenesis - Spermatogenesis and Oogenesis	5 Lectures
Unit 2	Drosophila, Hydra 1.2 Terminologies related to Development Biology Gametogenesis - Spermatogenesis and Oogenesis 2.1Origin of Primordial germ cells	5 Lectures
Unit 2	Drosophila, Hydra 1.2 Terminologies related to Development Biology Gametogenesis - Spermatogenesis and Oogenesis 2.1 Origin of Primordial germ cells 2.2 Structure of sperm,	5 Lectures
Unit 2	Drosophila, Hydra 1.2 Terminologies related to Development Biology Gametogenesis - Spermatogenesis and Oogenesis 2.1 Origin of Primordial germ cells 2.2 Structure of sperm, 2.3 Regulation of sperm motility	5 Lectures
Unit 2	Drosophila, Hydra 1.2 Terminologies related to Development Biology Gametogenesis - Spermatogenesis and Oogenesis 2.1 Origin of Primordial germ cells 2.2 Structure of sperm, 2.3 Regulation of sperm motility 2.4 Factors controlling spermatogenesis	5 Lectures
Unit 2	Drosophila, Hydra 1.2 Terminologies related to Development Biology Gametogenesis - Spermatogenesis and Oogenesis 2.1 Origin of Primordial germ cells 2.2 Structure of sperm, 2.3 Regulation of sperm motility 2.4 Factors controlling spermatogenesis 2.5 Role of dyenin ATPase, role of pH and divalent cation.	5 Lectures
Unit 2	Drosophila, Hydra 1.2 Terminologies related to Development Biology Gametogenesis - Spermatogenesis and Oogenesis 2.1 Origin of Primordial germ cells 2.2 Structure of sperm, 2.3 Regulation of sperm motility 2.4 Factors controlling spermatogenesis 2.5 Role of dyenin ATPase, role of pH and divalent cation. 2.6 Structure of egg, synthesis and storage of maternal transcripts,	5 Lectures
Unit 2	Drosophila, Hydra 1.2 Terminologies related to Development Biology Gametogenesis - Spermatogenesis and Oogenesis 2.1 Origin of Primordial germ cells 2.2 Structure of sperm, 2.3 Regulation of sperm motility 2.4 Factors controlling spermatogenesis 2.5 Role of dyenin ATPase, role of pH and divalent cation. 2.6 Structure of egg, synthesis and storage of maternal transcripts, proteins and cell organelles,	5 Lectures
Unit 2	Drosophila, Hydra 1.2 Terminologies related to Development Biology Gametogenesis - Spermatogenesis and Oogenesis 2.1 Origin of Primordial germ cells 2.2 Structure of sperm, 2.3 Regulation of sperm motility 2.4 Factors controlling spermatogenesis 2.5 Role of dyenin ATPase, role of pH and divalent cation. 2.6 Structure of egg, synthesis and storage of maternal transcripts, proteins and cell organelles, 2.7 rDNA amplification, transcriptionlampbrush chromosomes,	5 Lectures
Unit 2	Drosophila, Hydra 1.2 Terminologies related to Development Biology Gametogenesis - Spermatogenesis and Oogenesis 2.1 Origin of Primordial germ cells 2.2 Structure of sperm, 2.3 Regulation of sperm motility 2.4 Factors controlling spermatogenesis 2.5 Role of dyenin ATPase, role of pH and divalent cation. 2.6 Structure of egg, synthesis and storage of maternal transcripts, proteins and cell organelles, 2.7 rDNA amplification,transcriptionlampbrush chromosomes, vitellogenesis,	5 Lectures
Unit 2 Unit 3	Drosophila, Hydra 1.2 Terminologies related to Development Biology Gametogenesis - Spermatogenesis and Oogenesis 2.1 Origin of Primordial germ cells 2.2 Structure of sperm, 2.3 Regulation of sperm motility 2.4 Factors controlling spermatogenesis 2.5 Role of dyenin ATPase, role of pH and divalent cation. 2.6 Structure of egg, synthesis and storage of maternal transcripts, proteins and cell organelles, 2.7 rDNA amplification, transcriptionlampbrush chromosomes,	5 Lectures 3 Lectures

	3.1 Mechanism of fertilization: Species specific sperm attraction, recognition of egg and sperm, acrosome reaction, signal transduction, 3.2 Activation of ovum, regulation of cell cycle and utilization of maternal macromolecules and organelles during early development 3.3 Molecular strategy to ensure mono-spermy and polyspermy species specificity in fertilization. Significance	
Unit 4	Cleavage ,Blastulation, Gasrulation and Neurulation	6 Lectures
	4.1 Types of eggs and cleavage patterns: Concepts in Pattern formation, animal vegetal axis, gradients, origin, and specification of germ layers, Fate maps 4.2 Tubulation: Neurogenesis, growth and differentiation	
Unit 5	Organizers	3 Lectures
	Role of Spemann's organizers in frog and Hensen's node in birds. Functions of Organizers	
Unit 6	Mesoderm induction in <i>Xenopus</i>	3 Lectures
	6.1 Role of signals in dorsal, intermediate and ventral mesoderm induction, Progressive Determination of the Amphibian Axes 6.2 Neural competence and molecular signaling during neural induction	
Unit 7	Pattern formation in <i>Drosophila</i>	3 Lecture
	Bicoid, Nanos and Torso Morphogen gradients and regulation of Hunchback	
Unit 8	Stem cells and its development	4 Lecture
	8.1 Origin, Types of stem cells, Characteristics, functions 8.2 Concept of growth, differential cell proliferation, shaping of organ primordia and programmed morphogenetic cell death. 8.3 Growth and post embryonic development: Apoptosis, aging and senescence. Hayflicks experiment.	

References

- 1. Alberts, B., D. Bray, J. Lewis, M. Raff, K. Roberts and J. D. Watson. (1995). MolecularBiology of the Cell. Eds. 3, Garland Publi. New York and London.
- 2. Lodish, H., D. Baltimore, A. Berk, L. Zipursky, M. Matsudaira and J. Darnell. (1995). Molecular Cell Biology, Eds. 3, Scientific American & W. H. Freeman. New York.
- 3. Cell and Molecular Biology By De Robertis, EDP. And De RobertisEME, Molt Saunders Inc
- 4. Developmental Biology, 9th edition (2010), S.F. Gilbert. Publisher SinauerAssociates Inc.
- 5. *Principles of Development*, 3rd edition (2007), Lewis Wolpert, Publisher-Oxford University Press.
- 6. *An Introduction to Embryology*, 5th edition (2004), B. I. Balinsky. Publisher Thomas Asia Pvt. Ltd.
- 7. Developmental Biology, (2001), R. M. Twyman, Publisher Bios Scientific Publishers LTD.
- 8. Analysis of Biological Development, 2nd edition (2001), Klaus Kalthoff, McGraw Hill

Progressive Education Society's Modern College of Arts, Science and Commerce,

Shivajinagar, Pune -5.

P.G. Part 1 Master of Science SEM I (2023 Course under NEP 2020)

Course Code: 23ScZooP113 Course Name: Practical Lab 1
Teaching Scheme: TH 4Hours/Week Credit - 04C

Examination Scheme: CIA: 50 Marks End-Sem: 50Marks

Prerequisite Courses: Bachelor of Science

Course Objectives:

- To understand basic biochemistry, cell biology, developmental biology and environmental biology by actually performing related experiments
- To observe fresh water fauna in the field as well as in the laboratory

Course Outcomes:

- The students will have an hands on training experience in biochemistry, cell biology, freshwater Zoology, Developmental Biology and Environmental Biology.
- Students shall be able to understand the interrelationship between different biotic and abiotic factors in fresh water ecosystems

Course Contents

Sr.	Name of the Practical	No. of
No.		Practicals
	Biochemistry	
1.	Preparation of Buffers of given pH and molarity and measurement of pH of various samples.	1P
2.	Estimation of protein by FolinCiocalteu method.	1P
3.	Estimation of Vitamin C	1P
4.	Units and specific activity of enzymes and progressive curve	1P
5.	Effect of substrate concentration on enzyme activity	1P
6.	Effect of pH and temperature on enzyme activity.	1P
7.	Effect of activators and inhibitors on enzyme activity.	1P
8.	Estimation of amino acids by paper chromatography and dyes by TLC.	1P
9.	To find absorption spectrum of haemoglobin, BSA, Tyrosine.	1P
10.	Estimation of Glucose by DNSA	
	Cell Biology and Developmental Biology	

11.	Cell fractionation- Nuclei isolation and nuclear count.	1P
12.	Preparation of blood smears: Cell type identification and differential counts	1P
13.	Ultra structure of cell organelles.	1P
14.	Study of Cyclosis in Paramoecium	1P
15.	Mounting of chick embryos and preparation of permanent mounts, Gross anatomy and histology of chick embryo upto 72 hrs. Brain, heart, lens, ear development.(18 hrs., 24 hrs., 33hrs., 48 hrs. WM)	1P
16.	Drosophila development on live material: egg structure, egg laying and early development in culture by phase contrast	2P
17.	Study of effect of ligature in Drosophila / House fly larva	1P
18.	Study the imaginal disc in Drosophila larva	1P
19.	Chick limb bud staining with neutral red for morphogenetic cell death	1P
20.	Regeneration of Hydra/Planaria	1P
21.	Cell fractionation- mitochondria isolation and observation	1P
	Fresh Water Zoology	1P
22.	A qualitative and quantitative analysis of zooplankton from a given sample of water using Sedgwick rafter counting cell.	1P
23.	Study of aquatic and semi-aquatic adaptations in amphibians and reptiles.	1P
24.	Study of locomotory and respiratory adaptations in aquatic insects and their larvae.(<i>Ranatra</i> , <i>Notonecta</i>)	1P
25.	Estimation of Chlorides in given sample of water,	1P
26.	Study of locomotory and respiratory adaptations in aquatic insects and their larvae.(Gerris, Bellostoma, Dytiscus)	1P
27.	Analysis of LC50 for known pollutants.	1P
28.	Compulsory Visit to ZSI, Pune and water purification plant and submission of tour report.	1P
29.	Water analysis with regards to hardness.	1P
30.	Determination of DO from water sample	1P

Progressive Education Society's Modern College of Arts, Science and Commerce,

Shivajinagar, Pune -5.

PG Part 1 Year of M.Sc. (Zoology) SEM I (2023 Course under NEP 2020)

Course Code: 23ScZooP114 Course Name: Freshwater Zoology
Teaching Scheme: TH 2Hours/Week Credit - 02C

Examination Scheme: CIA:25 Marks End-Sem: 25 Marks

Prerequisite:

• Bachelor of Science

Course Objectives:

- To learn freshwater diversity and their interaction with the environment
- To study the basic properties of aquatic ecosystem and causes of water pollution

Course Outcomes:

On completion of the course, student will be able to-

- Understand importance of freshwater ecosystem
- Understand the aquatic biodiversity and their adaptive features
- Recognize different types of environment pollution and the effect of different pollutants on organisms.
- Have critical understanding of environmental impact.

Course Contents

Unit 1	Types of Aquatic environment	3Lectures
	1. 1 Lotic Habitat	
	1.2 Lentic Habitat	
	1.3 Ephemeral water bodies	
	1.4 Zonation of fresh water bodies	
Unit 2	Physical conditions of water	3Lectures
	2.1 Movement of water, Depth, Viscosity, Turbidity, Density,	
	Buoyancy, Temperature and light, Stratification, Transparency	
Unit 3	Chemical conditions of water	2Lectures
	3. 1 Dissolved oxygen and Carbon di-oxide, phosphates, Nitrates.	
	Acidity and alkalinity, Mg-hardness, Ca-hardness, dissolved	
	solids, organic Matter.	
	3.2 Nutrient cycles in lakes	
Unit 4	Physiological and protective adaptations of the following	3Lectures
	4.1Protozoa, Rotifera, Crustaceans and Fishes	
Unit 5	Animal diversity in freshwater habitats	5Lectures
	5.1 1Diversity of animals from freshwater habitats	
	5.2Different zooplanktons common in fresh water	

Unit 6	Diagnostic features and life cycle of	3Lectures
	6.1 Fairy shrimps and tadpole shrimps (temporary rainwater pool	
	animals	
Unit 7	Respiratory and Locomotory adaptations in freshwater insects	3Lectures
	and their larvae	
	7.1 Different types of respiratory adaptation in some freshwater	
	insects	
	7.2 Different types of locomotory adaptation in some fresh water	
	insects.	
Unit 8	Amphibians and aquatic adaptations	2Lectures
	8.1General life cycle of frog	
	8.2Trophic status of Tadpole in freshwater habitat	
Unit 9	Fresh water Management	5Lectures
	9.1 Causes of aquatic pollution: agricultural, industrial, thermal	
	9.2Eutrophication	
	9.3Biological changes in freshwater due to sewage pollution,	
	sewage treatment	

References:

- Mellanby, H(1975). Animal life in freshwater, 6th edition, Chapman-Hall
 Limnology: Welch P.S. (1975). Mc. Grall and Hill Co. New York.
 Treatiseon Limnology: Hutchinson, G.E (1967) John Willy Pub, New York

Progressive Education Society's Modern College of Arts, Science and Commerce,

Shivajinagar, Pune -5.

PG Part 1 Year of M.Sc. (Zoology) SEM I (2023 Course under NEP 2020)

Course Code: 23ScZooP121 Course Name: Fundamentals of Systematics and

Environmental science

Teaching Scheme: TH 4Hours/Week Credit - 04C

Examination Scheme: CIA: 50 Marks End-Sem: 50 Marks

Prerequisite:

• Bachelor of Science

Course Objectives:

- To make students understand the basic concepts of classification and systematics and its importance
- To clear the concept of species and its types.
- To enable the student classify and identify different organisms by running taxonomic keys
- To introduce detailed concepts in environment and its different biotic and abiotic components.
- To make students understand the concept of bio concentration and bioaccumulation of different lethal pesticides in environment and their effect.
- To introduce in detail the concepts of biomedical waste and hazardous waste.

Course Outcomes:

On completion of the course, student will be able to-

- The students can run taxonomic keys and identify different organism based on keys
- The students have a clear idea about the modern methods of classification and identification based on molecular phylogenetics.
- Analyze the contribution of microbiology area of science in water treatment, solid waste management, bioremediation and phytoremediation.
- Know about biomedical and hazardous waste and process of handling and disposing them.
- Solve the environmental problems involving interaction of humans and natural systems at local or global level

Course Contents

Unit 1	Introduction to Systematics	3Lectures
	1.1Biological classification	

	1.2Taxonomic Characters: procedure and keys	
	1.3Species concept: varieties, subspecies, sibling species, race etc	
11 7 2	TZ' 1 61'6	ET 4
Unit 2	Kingdoms of life	5Lectures
	2. 1General outline of Kingdom Monera, Protista, Fungi, Plantae	
	2.2 Broad outline of Kingdom Animalia	
Unit 3	Methodologies of systematics	4Lectures
	3.1Morphology based taxonomy	
	3.2Numerical taxonomy, Cyto-taxonomy and chemo taxonomy	
	3.3Molecular Systematics	
	3.4DNA fingerprinting	
	3.5 Molecular Markers and detection of polymorphism	
	RFLP,RAPD	
Unit 4	Taxonmic Keys:	5Lectures
	4. 1Types of keys	
	4.2Merits and demerits of different keys.	
Unit 5	International Code for Zoological Nomenclature	5Lectures
	5.1Operative principles	
	5.2Interpretation and application of different rules.	
	5.3Zoological nomenclature: formation of names	
Unit 6	Taxonomic Procedures	5Lectures
	6.1Taxonomic collection and preservation process	
	6.2Curetting process	
Unit 7	Molecular phylogenetics	3Lectures
	7.1 Types of phylogenetic trees	
	7.2 Methods in molecular phylogenetics	

	Environmental Science	
Unit 1	Fundamentals of Environmental Sciences	3 Lectures
	1.1. Definition, Principles and Scope of Environmental Science.	
	1.2 Structure and composition of atmosphere, hydrosphere,	
	lithosphere and biosphere	
	1.3 Biogeographic provinces of the world and agro-climatic zones	
	of India. Concept of sustainable development.	
Unit 2	Environmental Chemistry	3 Lectures
	2.1 Composition of air. Particles, ions and radicals in the	
	atmosphere, Photochemical smog.	
	2.2 Hydrological cycle. Concept of DO, BOD and COD.	
	Sedimentation, coagulation, flocculation, filtration, pH and Redox potential (Eh).	
	2.3 Biogeochemical cycles – nitrogen, carbon, phosphorus and	
	sulphur	
Unit 3	Environmental Pollution and Control	8 Lectures
	3.1 Air pollution and pollutants	
	3.2 Water pollution and pollutants	
	3.3 Soil Pollution and pollutants	

	3.4 Pesticide pollution and its impact	
	3.5 Noise pollution	
	3.6 Thermal pollution	
	3.7 Marine Pollution	
	3.8 Radioactive pollution	
Unit 4	Hazardous waste management	3 Lectures
	4.1 Hazardous waste management: Treatment Methods –	
	neutralization, oxidation reduction, precipitation, solidification,	
	stabilization, incineration and final disposal.	
	4.3 Electronic waste (e-waste) and its environmental	
Unit 5	consequences. Environmental Monitoring, Assessment, Management and	7 Lectures
Omt 5	Legislation	/ Lectures
	5.1 Aims and objectives of Environmental Impact Assessment	
	(EIA) and Environmental Management Plan (EMP).	
	5.2 Remote Sensing and GIS: Principles of remote sensing and GIS	
	5.2 Overview of Environmental Laws in India: Biological	
	Diversity Act, 2008, Water (Prevention and Control of Pollution)	
	Act, 1974, Air (Prevention and Control of Pollution) Act, 1981,	
	The Hazardous Wastes (Management , Handling and	
	Transboundary Movement) Rules, 2016, The Bio-Medical Waste	
	Management Rules, 2016, The e-waste (Management and	
	Handling) Rules 2011,2016,	
Unit 6	Current Environmental Issues in India:	2 Lectures
-	6.1 National river conservation plan – NamamiGange and	
	Yamuna Action Plan.	
	6.2 Forest Conservation – Chipko movement, Appiko movement,	
	Silent Valley movement and Gandhamardhan movement.	
	6.3 Waste Management – Swachha Bharat Abhiyan	
	6.4 Environmental Disasters: Minnamata Disaster, Bhopal Gas	
	Disaster, 1984, Chernobyl Disaster, 1986, Fukusima Daiichi	
Unit 7	nuclear disaster, 2011	2 Lagturas
UIIIt /	Environmental microbiology 7.1 Introduction to environmental microbiology	3 Lectures
	7.1 Introduction to environmental interoblology 7.2Bioremediation of waste water - waste water treatment, bio-	
	filters, microbial polymers, microbial plastics, Bioaccumulation,	
	Biomagnification, marine pollution.	
Unit 8	Green Technology	1 Lecture
	8.1 Overview, principles and applications	

References

- 1 Principals of Systematic Zoology, Ernst Mayer and Peter D. Ashlok
- 2. Biodiversity, Wilson A.O., Academic Press, Washington.
- 3. Avise J.C., Molecular markers, Natural history and evolution, Chapman and Hill, NY.
- **4.**Ecology-Odum, E.P, Amerind publication.

- 5. Environmental biology, Sharma P.D., Rastogi publication.
- 6. Environmental Science, S.CSantra. New Central Book Agency (P) Ltd.
- 7. Environmental Studies, ErachBharucha
- 8. Environmental pollution-Dix, H.M., John Wiley publication.
- 9. Environmental pollution and its controlunder international law, R.A.Malviya, Chay publication.
- 10. Environmental Impact Assesment, L.W. Canter, McGraw Hill Publication.
- 11.D.P. Lawrence (2003) Environmental Impact Assessment: Practical Solutions to Recurrent Problems, John Wiley and Sons, New Delhi.
- 12. Sharma, P. D. (2005). Environmental Microbiology. Alpha Science International Ltd. ISBN. 1842652761
- 13. Pradipta, K. and Mohapatra, I. K. (2008). Text book of Environmental Microbiology.

Progressive Education Society's Modern College of Arts, Science and Commerce,

Shivajinagar, Pune -5.

PG Part 1 Year of M.Sc. (Zoology) (2023 Course under NEP 2020) SEM I

Course Code: 23ScZooP122 Course Name: Fundamentals of Systematics and

Aquaculture

Teaching Scheme: TH 4Hours/Week Credit - 04C

Examination Scheme: CIA: 50 Marks End-Sem: 50 Marks

Prerequisite:

• Bachelor of Science

Course Objectives:

- To make students understand the basic concepts of classification and systematics and its importance
- To clear the concept of species and its types.
- To enable the student classify and identify different organisms by running taxonomic keys.
- To understand the principles of aquaculture, including production system, water quality and nutrition.

Course Outcomes:

On completion of the course, student will be able to-

- The students can run taxonomic keys and identify different organism based on keys
- The students have a clear idea about the modern methods of classification and identification based on molecular phylogenetics.
- Understand the aquaculture systems.
- Understand conditioning factors in aquaculture and how they can be manipulated.
- Understand the environmental impacts of aquaculture.

Course Contents

Unit 1	Introduction to Systematics	3Lectures
	1.1Biological classification	
	1.2Taxonomic Characters: procedure and keys	
	1.3Species concept: varieties, subspecies, sibling species, race etc	
Unit 2	Kingdoms of life	5Lectures
	2. 1General outline of Kingdom Monera, Protista, Fungi, Plantae	
	2.2 Broad outline of Kingdom Animalia	
Unit 3	Methodologies of systematics	4Lectures
	3.1Morphology based taxonomy	

	3.2Numerical taxonomy, Cyto-taxonomy and chemo taxonomy 3.3Molecular Systematics 3.4DNA fingerprinting 3.5Molecular Markers and detection of polymorphism RFLP,RAPD	
Unit 4	Taxonmic Keys:	5Lectures
	4. 1Types of keys	
	4.2Merits and demerits of different keys.	
Unit 5	International Code for Zoological Nomenclature	5Lectures
	5.1Operative principles	
	5.2Interpretation and application of different rules.	
	5.3Zoological nomenclature: formation of names	
Unit 6	Taxonomic Procedures	5Lectures
	6.1Taxonomic collection and preservation process	
	6.2Curetting process	
Unit 7	Molecular phylogenetics	3Lectures
	7.1 Types of phylogenetic trees	
	7.2 Methods in molecular phylogenetics	

	Aquaculture	
Unit 1	Scope and systems of Aquaculture	7 Lectures
	 1.1 .Introduction: Present status, problems and scope of fish farming in global and Indian perspective. 1.2 Aquaculture systems: Extensive, semi-intensive and intensive culture of fish, Pen and cage culture in lentic and lotic water bodies, polyculture, composite fish culture. 1.3 Culture systems: Freshwater prawn culture, fish culture in paddy fields, Brackish water culture, Mariculture: Oyster culture, Crab culture, Lobster culture, mussel culture, culture of Eels, Culture of aquatic weeds. 	
Unit 2	Fish Farming	4Lectures
	 2.1 Fish farming: Nursery pond preparation, stocking, feeding and water quality management in the farming of major and minor carps, magur, tilapia, etc.;. 2.2 Stunted seedproduction and culture practice. 2.3 Transport of fish seed and Brood fish. Causes of mortality in transport 	
Unit 3	Fish pathology	6Lectures
	3.1 Parasitic infections3.2 Fungus infections3.3 Protozoan diseases3.4 Worm diseases	
Unit 4	Integrated farming	6 Lectures
	4.1 Integrated farming systems: Design, farming practices 4.2 IFS of fish with paddy, cattle, pig, poultry, duck, rabbit, etc.	
Unit 5	Seed production and hatchery management	7 Lectures

5.1 Introduction: History, constraints and current status of natural seed	
collection and hatchery seed production of Finfishes and shellfishes.	
5.2 Reproductive biology and Induced breeding of Finfish	
5.3 Reproductive biology and Induced breeding of Shellfish	
5.4 Hatchery design and management	

References

- 1. Principals of Systematic Zoology, Ernst Mayer and Peter D. Ashlok
- 2. Biodiversity, Wilson A.O., Academic Press, Washington.
- 3. Avise J.C., Molecular markers, Natural history and evolution, Chapman and Hill, NY.
- 4. Landau M., 1992. Introduction to Aquaculture..
- 5. John Wiley & Sons. Mcvey J.P., 1983. Handbook of Mariculture. CRC Press.
- 6. Pillay T.V.R.&Kutty M.N., 2005. Aquaculture- Principles and Practices.Blackwell.
- 7. Rath R.K., 2000. Freshwater Aquaculture. Scientific Publ.
- 8. Jhingran V.G. 1991. Fish and Fisheries of India. Hindustan Publ.
- 9. FAO. 1992. Manual of Seed Production of Carps. FAO Publ.

Progressive Education Society's Modern College of Arts, Science and Commerce, Shivajinagar, Pune - 5

mvajmagar, Fun PG Part 1

(2023 Course under NEP 2020) SEM I

Course Code: 23ScZooP131 Course Name: Research Methodology

Section 1

Teaching Scheme: 2 Hours/Week Credit: 02

Examination Scheme: CIA:25 Marks End-Sem: 25 Marks

Prerequisite Courses:

• B.A., B.Sc. B.Com, B.Voc., BBA, BBA IB, BBA CA

Course Objectives:

- To make students aware about research and its importance
- To obtain knowledge regarding systematic gathering of data and get advanced knowledge in the selected topic
- Toinculcatelogical and organized thinking in students
- To investigate some existing situation or problem by creating new system or method
- To help students to design research problem

Course Outcomes:

On completion of the course, student will be able to-

- 1. Describe importance of research
- 2. Differentiate between unethical and ethical practices of publication ethics
- 3. Select research problem appropriately
- 4. Prepare good hypothesis
- 5. Design research problem systematically
- 6. Analyze and organize data correctly
- 7. Prepare good scientific research report

Course Contents

Unit 1	Research problem and design	No. of
		lectures
	Introduction to research : meaning and definition	15
	of research, objective of research, importance of	
	research, characteristics of good research, purpose	
	and role of research, classification of research	
	Research problem: defining of research problem,	

	Criteria for selecting the research problem, ,	
	importance of literature survey in defining	
	research problem.	
	Hypothesis :Defining Hypothesis, types of	
	hypothesis, characteristics of good hypothesis,	
	formulation of hypothesis	
	Research Design: Definition and features of	
	research design, Concept of research design, types	
	of research design, preparation of research design,	
	Sampling techniques, characteristics of good	
	sampling designs	
Unit 2	Data analysis, report writing and publication	15
	ethics	
	Definition of Data, methods of data collection,	
	analysis of data, types of data analysis,	
	Questionnaire, Design of Questionnaire, Testing	
	hypothesis: parametric and non-parametric tests:	
	T-test, Z-test, Chi-square test, ANOVA	
	Report writing : importance of interpretation of	
	results, meaning, definition and significance of	
	report /thesis writing, Principals of research report	
	drafting, Types of reports, layout of research	
	report, important parts of reports, precautions of	
	preparation of report/ thesis	
	Publication ethics: definition, introduction and	
	importance, best practices/ standard settings	
	initiative and guidelines COPE, WAME, etc,	
	conflict of interest, Publication misconduct	
	:definition, concept problems that lead to unethical	
	behavior, violation of publication ethics, predatory	
	publishers and journals, software tools to identify	
	predatory publications developed by SPPU	

References:

- C. R. Kothari (2004) Research Methodology: Methods and Techniques 2nd Edition, New age International (p) Ltd Publications, New Delhi, India
- J.W. Creswell and J.D. Creswell (2017) Research Design: Qualitative, Quantitative, and Mixed Methods Approaches, 5thEdition, SAGE Publications, USA.
- C. G. Thomas (2021) Research Methodology and Scientific Writing, 2nd Edition, Springer Nature, New York.

• M. Kheider lectures from University of Biskra (2017) https://univ-biskra.dz/sites/fll/images/houadjli%20Ahmed%20Chaouki.pdf

Progressive Education Society's

Modern College of Arts, Science and Commerce,

Shivajinagar, Pune -05

P.G. Part I Year of M.Sc.Zoology SEM I (2023 Course under NEP 2020)

Course Code: 23ScZooP131 Course Name: Biological Techniques

Teaching Scheme: TH2Hours/Week Credit - 02C

Examination Scheme: CIA: 25Marks End-Sem: 25Marks

SECTION II

Course Objectives:

• To learn different techniques used in biology

• To study the applications and working of basic biological techniques

Course Outcomes:

On completion of the course, student will be able to-

• Understand the principle of biochemical techniques

• Design experiments using different biochemical techniques

Unit1	Chromatography	8Lectures
	1.1 Principles and applications of:	
	Adsorption chromatography	
	Partition chromatography	
	1.2 Ion-exchange chromatography,	
	affinity chromatography,	
	Molecular exclusion	
	chromatography, thin layer	
	chromatography, HPLC, RPLC	
	1.3 Selection of chromatographic	
** **	system.	47
Unit2	Electrophoresis	4Lectures
	2.1 Moving boundary electrophoresis,	
	zone electrophoresis,	
	2.2Different supports used for	
	electrophoresis, electrophoresis	
	under native, dissociating and	
	denaturing conditions, electrophoresis of nucleic acids and proteins,	
TT :/2	microchip electrophoresis	21
Unit3	Centrifugation	3Lectures
	3.1 Principle, basic theory of	
	ultracentrifugation	
	3.2 Molecular weight determination	
TT 1.4	and its applications	
Unit4	DNA and protein sequencing	5Lectures

Unit5	4.1 Sangers and Maxam Gilbert method of sequencing, clone contig and shortgun approaches 4.2 Protein sequencing methods Blotting	3Lectures
-	8	
	5.1Types of blotting - Southern, Northern and Western 5.2Dot blots	
Unit6	Radioactivity	3Lectures
	6.1 Properties of radioisotopes, commonly used isotopes, structure & working of G.M. counter, use of isotopes in biology 6.2 Radiation hazards.	
Unit7	Mass spectrometric techniques	4Lectures
	7.1 Introduction, Ionisation, Mass analysers, Detectors 7.2 Analysing protein complexes	

References:

- 1. Principles and Techniques of Biochemistry and Molecular Biology, 6th edition (2008), Keith Wilson and John Walker, Publisher–Cambridge University Press.
- 2. Light Microscopy in Biology: A Practical Approach, 2nd edition (1999), Alan J. Lacey, Publisher—Oxford University Press.
- 3. Electron Microscopy: Principles and Techniques for Biologists, (1992), Lonnie D. Russell, Publisher-Jones & Bartlett

SEMESTER II

Progressive Education Society's Modern College of Arts, Science and Commerce,

Shivajinagar, Pune -5.

P.G. Part I Year of M.Sc.Zoology (2023 Course under NEP 2020) SEM II

Course code: 23ScZooP211 Course

Name: Metabolic Pathways and
Advanced Genetics

Teaching Scheme: TH 4Hours/WeekExamination Scheme: CIA: 50Marks

Credit - 04C

End-Sem: 50 Marks

Course Objectives:

• To give a detailed outline of metabolism

- To make students understand the changes in biochemical reactions under different physiological conditions.
- To introduce students to different branches of Genetics
- To make them understand heredity principles

Course Outcomes:

On completion of the course, student will be able to-

- Understand the interrelationship between different biomolecules and their pathways
- Understand different disease conditions related to enzymes
 - Predict the phenotype of organisms by studying genotypes
 - Understand mechanisms of different fields of Genetics and solve numericals.

Course Contents: Metabolic Pathways

Unit1	Carbohydrate metabolism	11Lectures
	8.1Glycolysis, feeder pathways, gluconeogenesis, pentose	
	phosphate pathway, Glyoxalate cycle, regulation	
	Glycogen metabolism and its hormonal regulation	
	8.2The Citric acid cycle:	
	Cyclic overview and reactions. Metabolic sources of acetyl CoA.	
	Regulationand amphibolic nature of the cycle, Anapleurotic	
	reactions	
	8.3Dark reactions and Light reactions of Photosynthesis: CO ₂	
	fixation: C3, C4 and	
	CAM pathways.	
Unit2	Lipid metabolism	6Lectures
	9.1 Oxidation of unsaturated and saturated fatty acid and its	
	regulation.	
	9.2 Propionyl CoA metabolism, significance, synthesis and	
	utilization of ketone bodies, Biosynthesis of palmitate and its	
	regulation.	
	9.3 Mitochondrial and peroxisomal oxidation	

Unit3	Amino acid metabolism	5Lectures
	10.1 Oxidative degradation of amino acids: transamination,	
	oxidative deamination	
	10.2 Ureacycle, Ammonia excretion	
Unit4	Nucleotide Metabolism	4Lectures
	11.1Salvage and <i>de novo</i> pathways of purine and pyrimidine Nucleotide synthesis, regulation 11.2 Nucleotide degradation pathways, Acidosis and Gout	
Unit5	Oxidative phosphorolytation – Electron transport chain, Q cycle, ATP synthesis, Decouplers	4Lectures

Unit1	Mendelian Genetics and Linkage	5 Lectures
	1.1Recapitulation of Mendelian principles 1.2 Linkage and crossing over: Linkage, linkage groups, types of crossing over, recombination maps in diploids for 3 point test cross, (determination of gene order with suitable examples)	
Unit2	Quantitative Genetics	2Lectures
	2.1 Inheritance of qualitative and quantitative traits: Polygenic traits and mode of inheritance, genetic and environmental factors 2.2 Heritability- broad sense and narrow sense(Russel)	
Unit3	Population Genetics	4 Lectures
	3.1Principles of Population Genetics: Derivation of Hardy-Weinberg law and its application for autosomal genes.3.2 Assortative meeting, inbreeding and genetic drift	
Unit4	Clinical Genetics	6 Lectures
	4.1Monogenetic diseases – Cystic Fibrosis, Tay-Sach's syndrome 4.2 – Inborn metabolic errors – Disorders of nucleic acid metabolism, lipid metabolism, Lysosomal storage diseases, Peroxisomal disorders	
Unit5	Applications of Molecular methodologies in genetic analysis	5Lectures
	 5.1 Gene localization on chromosome 5.2 Chromosomal probes and paints 5.3 Gene Therapy – Ex-vivo and in-vivo gene therapy and examples of gene delivery systems 	
Unit6	Human Genome Project	3 Lectures

Unit7	Drosophila Genetics – Genetic basis of sex determination and	5 Lectures
	dosage compensation, Maternal genes, segmentation genes and	
	homeotic gene functions.	

References

- 1. Biochemistry, 3rd Ed. (2005), Voet Donald and Voet Judith G. John, Publisher: Wiley & sons, New York.
- 2. Biochemistry 6th Ed, (2007) Berg Jeremy, Tymoczko John, StryerLubert, Publisher: W. H. Freeman, New York.
- 3. Lehninger's Principles of Biochemistry, 4th edition, (2005) Nelson D. L. and Cox M. M. W. H. Freeman & Co. NY.
- 4. An Introduction to Genetic Analysis A.J.F. Griffiths, J. Doebley, C. Peichel, D.A. Wassarman (12th ed.) W.H. Freeman Publ. 2020.
- 5. i-Genetics: A molecular Approach P.J. Russell. Pearson Publ. 2016.
- 6. Concepts of Genetics W.S. Klug and M.R. Cummings (12th ed.) Pearson Publ. 2019.
- 7. Lewin's GENES XII J.E. Krebs, E.S. Goldstein, S.T. Kilpatrick. Jones and Bartlett Publ. 2018.
- 8. Genetics M.W. Strickberger (3rd ed.) Pearson India Publ. 2015
- 9. Principles of Genetics E.J. Gardner, M.J. Simmons, D.P. Snustad (8th ed.) John Wiley & Sons 2006.
- 10. Genetics: Analysis of Genes and Genomes D.L. Hartl and E.W. Jones (6th ed.) Jones & Bartlett Publ. 2004.
- 11. Developmental Biology S.F. Gilbert (10th ed.) Sinauer Associates Inc. 2013.
- 12. Medical Genetics L.B. Jorde, J.C. Carey, M.J. Bamshad (5th ed.) Elsevier 2015.
- 13. Genetics in Medicine (Thomson & Thomson) R.L. Nussbaum, R.R. McInnes, H.F. Willard (8th ed.) Elsevier 2016.

Progressive Education Society's Modern College of Arts, Science and Commerce,

Shivajinagar, Pune -5.

P.G. Part 1 Master of Science SEM II (2023 Course under NEP 2020)

Course Code: 23ScZooP212 Course Name: Physiology and Endocrinology

Teaching Scheme: TH 4Hours/Week Credit - 04C

Examination Scheme: CIA: 50Marks End-Sem: 50 Marks

Prerequisite:

Bachelor of Science

Course Objectives:

• To introduce detailed concepts in physiology.

- To learn comparative physiology in different animals.
- To introduce basic structure and function of different hormones

 To learn significance, structures of different receptors and signalling pathways

Course Outcome:

On completion of the course the student will be able to:

- Understand the importance of concepts of physiology in different animals.
- Understand the importance and significance of physiological processes in mammals
- Understand the hormone receptor interaction
- Know the different types of endocrine glands and their functions

Course Contents: Physiology

Unit 1	Digestion:	2Lectures
	1.1 Physiology of digestion and absorption.	
Unit2	Respiration:	4Lectures
OIIItZ	*	4Lectures
	2.1 Respiratory surfaces: Comparison of ventilation associated with	
	gills and pulmonary respiration.	
	2.2 Blood pigments: Role in oxygen transport, Oxygen dissociation	
	curves and their physiological significances, Transport of CO ₂ .	
Unit3	Circulation:	4Lectures
	3.1 Cardiac cycle, Neurogenic and myogenic hearts,	

	3.2 Blood volume, cardiac out-put, ECG, peak abnormalities	
Unit4	Muscle contraction:	4Lectures
	4.1 Structure of the skeletal muscle,	
	4.2 Proteins of the myofilaments, actin-myosin interaction;	
	sarcoplasmic reticulum and role of calcium in contraction.	
TT 1.5		21
Unit5	Osmotic regulation:	3Lectures
	5.1 Osmolarity and tonicity, ionic regulation, hyper and hyposmotic	
	regulators,	
	5.2 Ureosmotic animals.	
Unit6	Excretion:	4Lectures
Cilito	6.1 Basic processes in urine formation, Renal function in animals	4Lectures
	"Mammalian kidney", Renal portal system, counter-current	
	mechanism, disorders.	
Unit7	Temperature:	1Lecture
	7.1 Mechanism of thermoregulation in homeotherms and Poikilotherms	
	Polkilotherms	
Unit8	Chemical communication:	4Lectures
Cinto		120000100
	8.1 Neuro-hemal and endocrine organs	
	8.2 Chemistry of vertebrate hormones	
11:40	8.3 Mechanism of hormone action.	51 t
Unit9	Sense organs: 9.1 Classification of sense organs and their principles.	5Lectures
	9.2 Detailed mechanism of photoreception	
	9.3 Types of reflexes and their functions	
	9.4 Principles of neural integration	
	9.5 Disorders	
	Endocrinology	
TT 1/4 1		AT.
Unit 1	Regulation by chemical messenger 1.1 Types of regulatory molecules: Hormones, Neurotransmitters	4Lectures
	1.2 Endocrine glands& hormones	
	1.3Paracrine regulators	
Unit2	Hormone Receptor and Mechanism of Hormone Action	5Lectures
	2.1Cell surface receptors, intracellular receptor	
	2.2 Receptor proteins & types of cell signaling	
	2.3 Signal Transduction cascade	
Unit3	Actual PDL STH and TSH Operational Actual PDL	7 Lectures
	ACTH, PRL, STH and TSH, Osmoregulatory Hormones -ADH, Oxytocin; Mineral corticoids-renin-angiotensin	
Unit4	Hormonal Regulation	5 Lectures
Jinet	4.1Gastrointestinal hormones	3 Lectures
	4.2 Carbohydrates, protein and lipid metabolism	
	4.3 Pancreatic hormones glucocorticoids	
Ĩ	4.4 Control of calcium and phosphate metabolism	1

Unit5	Pituitary and hypothalamus	3Lectures
	5.1Control of chromatophore	
	5.2Hypothalmo- releasing hormone	
Unit6	Endocrine mechanism in crustacean	3 Lectures
	6.1 X and Y organs,	
	6.2Regulation of metabolism, heart, salt and water balance,	
	reproduction, colour change, moulting	
Unit7	7.1 Hormones and reproduction in cephalopod mollusks and	3 Lecture
	echinoderms	
	7.2 Hormones regulation in insect larval development and	
	metamorphosis	

References:

- Principles of Animal Physiology (2006), C. D. Moyes and P. M. Schulte. Publisher Pearson Education Inc. and Dorling Kindersley Publishing Inc.
- Text book of Medical Physiology 10th edition (2001),. A. C. Guyton and J. E. Hall. Publisher W. B. Saunders Company, Philadelphia. —
- Principles of Anatomy and Physiology, 11th edition (2006), G. J. Tortora and B. Derrickson. Publisher-John Wiley and Sons Inc.
- Endocrinology, 5th edition (2008), Mac. E. Hadley. Publisher-Pearson Education Inc. and Dorling Kindersley Publishing Inc.
- Comparative Vertebrate Endocrinology 3rd edition (1998), P. J. Bentley. PublisherCambridge University Press.
- Vertebrate Endocrinology 3rd edition (1997), D. O. Norris. Publisher- Academic Press: An imprint of Elsevier.
- Knobil, Ernst and Neill, Jimmy D. (2005). Physiology of Reproduction Vol 1 3. Academic Press. Graphics. Guyton, A. C. and Hall, J. E. (2001). Text book of Medical Physiology. 10th edition. W. B. Saunders Company, Philadelphia.
- Tortora, G. J. and Derrickson, B. (2006). Principles of Anatomy and Physiology, 11th edition, John Wiley and Sons Inc.

Progressive Education Society's Modern College of Arts, Science and Commerce,

Shivajinagar, Pune – 5.

P.G. Part 1 Master of Science SEM II (2023 Course under NEP 2020)

Course Code: 23ScZooP213 Course Name: Practical Lab2

Teaching Scheme: TH 4Hours/WeekExamination Scheme: CIA: 50 Marks

Credit - 04C
End-Sem: 50Marks

Prerequisite Courses: Bachelor of Science

Course Objectives:

- To understand basic Genetics, Molecular Biology, Physiology, Entomology and Biodiversity by actually performing related experiments
- To isolate and quantify genetic material of prokaryotic and eukaryotic cells.

Course Outcomes:

- The students will have an hands on training experience in Genetics, Molecular Biology, Physiology, Entomology and Biodiversity.
- Students shall be able to understand the insect systems in detail.

Sr.	Name of the Practical	No. of
No.		Practicals
	Genetics and Molecular Biology	
1.	Lab Safety Techniques and sterilization.	1P
2.	Isolation of bacterial DNA and estimation by UV spectrophotometry	1P
3.	Isolation of Liver/ Blood DNA	1P
4.	Quantification of DNA by Agarose gel electrophoresis	1P
5.	Absorption studies of isolated DNA	1P
6.	To analyse protein on native PAGE and SDS-polyacrylamide gel electrophoresis	2P
7	Polytene chromosomes of Drosophila or Chironomous-examination of puff and bands.	1P
8.	Pedigree Analysis: Sex-Linked, Autosomal dominant and recessive	1P
9.	Study of basic microbiology techniques	1P

10.	Bacterial growth curve	
	Physiology and Endocrinology	
11.	Body size and oxygen consumption in aquatic animals (crab/fish).	1P
12	Study of nitrogenous waste products of animals from different habitats	1P
13.	RBCs in different vertebrates and in different physiological conditions.	1P
14.	Determination of bleeding and clotting time in human blood	1P
15.	Estimation of sugar in rat/crab/human blood	1P
16.	Determination of the heart beat in the crab-effect of temperature	1P
17.	Effect of eye stalk ablation on glucose in the haemolymph of the crab	1P
18.	Histology of invertebrateand vertebrate neurosecretory and endocrine	2P
	structures	
	Basic Entomology and Biodiversity	
19.	Methods of collection, preservation and presentation of insects	2P
20.	Study of head capsules, mouth parts and antennae and their modification	1P
21.	Study of generalized wings and their modifications with significance	1P
22.	Study of beneficial insects and harmful insects	1P
23.	Dissection of cockroach for digestive and reproductive systems	1P
24.	Dissection of cockroach for reproductive systems	1P
25.	Study of biodiversity indices with example	1P
26.	Study of endangered fauna of Maharashtra	1P
27.	Supportive instruments in biodiversity assessment	1P
28.	Biodiversity study of fish, amphibian, reptiles, aves and mammals available	1P
	in local area	
29	Interpretation of ECG	1P

Progressive Education Society's Modern College of Arts, Science and Commerce,

Shivajinagar, Pune -5.

PG Part 1 Year of M.Sc. (Zoology) SEM II (2023 Course under NEP 2020)

Course Code: 23ScZooP214 Course Name: Basic Entomology and Biodiversity

Teaching Scheme: TH 2Hours/Week Credit - 02C

Examination Scheme: CIA: 25 Marks End-Sem: 25 Marks

Prerequisite:

• Bachelor of Science

Course Objectives:

- To introduce basic entomology
- To learn origin, evolution and basic morphology of insects.
- To equip students with adequate knowledge of various biodiversity monitoring methodologies, conservation and management.
- The course is also focused to creating environmental awareness among learners.
- To make student understand the different causes of loss of biodiversity and the various ways to conserve it.

Course Outcomes:

On completion of the course, student will be have -

- Basic knowledge of entomology
- An idea about the typical morphological features of insect
- Evolutionary significance of insect
- To know about different types of insects and their different interactions with humans and other organisms
- Develop an ability to analyze, present and interpret wildlife conservation management information.
- Understand the importance of bio diversity and the consequences of bio diversity loss
- Know present status of wildlife of India and about rare and endangered species depicted in red data book.

Course Contents

Unit 1	Introduction to entomology	2Lectures
	1.1Definition and scope	
	1.2Origin of insects	
	1.3Evolution of Arthropods and inter-relationship of different	
	classes	
	1.4Overview of common insect orders – General characters	
Unit 2	General morphology of Insect	3Lectures

	2.1Head and its different appendages	
	2.2Thorax and appendages	
	2.3Abdomen and appendages	
Unit 3	General Anatomy of Insect	10 Lectures
3 3337 6	3.1Brief outline of digestive system	
	3.2Brief outline of Respiratory system	
	3.3Brief outline of Circulatory system	
	3.4Brief outline of Nervous system	
	3.5Brief outline of Reproductive system	
	3.6Brief outline of Excretory system	
	3.7Brief outline of Endocrine system	
	Biodiversity	
Unit 1	Concept of biodiversity	1Lecture
	4.1 Defination Levels of biodiversity	
	4.2 Values of biodiversity: Consumptive, productive, social,	
	ethical and option values	
Unit 2	Biodiversity distribution	2Lectures
	2.1 Hotspot of biodiversity of world	
	2.2 Biogeographical classification of India	
	2.3 Endemism.	
Unit 3	Wildlife and its protection	2 Lectures
	3.1 Wildlife in India: value of wildlife and need for its	
	conservation.	
	3.2 Conservation and protection act: Forest Conservation Act	
	1971, 1972, 1981, Wildlife Protection Act	
Unit 4	Threats to biodiversity	3Lectures
	4.1 Loss of biodiversity and its causes	
	4.2 Listing of threatened biodiversity including vulnerable, rare,	
	threatened, endangered and extinct.	
	4.3 Red data book and Blue data book	
Unit 5	Conservation of biodiversity	3Lectures
	5.1 Strategies of conservation: Ex-situ and In-situ	
	5.2 Eco-development: objectives and implementation	
	5.3 Biodiversity mapping using GPS, GIS and remote sensing	
Unit 6	Case studies	2Lectures
	6.1 Project tiger	
	6.2 Project elephant	
	6.3 Project rhino	
	6.4 Project crocodile	
Unit7	Sustainable development and green technology	2Lectures
	7.1 Sustainable Development, Brundlandt Report. Biosafety of	
	GMOs and LMOs	
	7.2 International treaties and conventions. organizations,	
	International efforts (Vienna Convention, Montreal Protocol 1987,	
	UNFCCC, Kyoto Protocol, Earth Summit at Rio de Janeiro, 1992,	
1	Agenda-21, Convention on Biodiversity 1992.	

References

- 1. Imms' Text book of Entomology- By O. W. Richards and R. G. Davies, (Methuen &Cc., London,), Vols. I & II.
- 2. Principles of Insect Morphology- By R. E. Snodgrass, (Tata, McGraw-Hill, Bombay.
- 3. Introduction of Comparative Entomology- By R. M. Fox & J. W. Fox, (Reinhold, New York,).
- 4. The Insect: Structure & Function- By R.F. Chapman (E. L.B.S., & E.U.P. London,).
- 5. General & Applied Entomology- By K.K. Nayar, T.N. Anathakrishnan&B.V.David, (Tata,McGraw-Hill, New Dehli,).
- 6. A Text book of Entomology' by H. H. Ross (John Wiley and Sons, Ins. New York,).
- 5. Biodiversity -by Wilson, E.O. (1986), Academic press Washington
- 7. Biodiversity-Perception, Peril and Preservation Maiti, P.K and Maiti P. PHI learning private limited
- 8. Ecology and environement P.D. Sharma (2005) Rastogi Publication
- 9. Wildlife Ecology and Management. Caughley, G., and Sinclair, A.R.E. (1994) Blackwell Science.
- 10. Environment and Man. Wagher, R.H. (1974) (Second Edition), Norton, New York

Progressive Education Society's

Modern College of Arts, Science and Commerce,

Shivajinagar, Pune - 5

P.G. Part I Year of M.Sc. Zoology (2023 Course under NEP 2020)

Course Code: 23ScZooP221 Course Name: Biostatistics and Animal Biotechnology

Teaching Scheme: TH4Hours/Week Credit - 04C

Examination Scheme: CIA: 50Marks End-Sem: 50Marks

Course Objectives:

• To study basic biostatistics

• To study different processes of gene and animal cloning

• To study ethical aspects related to animal cloning

Course Outcomes:

On completion of the course, student will be able to-

• Apply different statistical tools by studying the data

• Design experiments related to gene cloning

• Understand importance of different genetically modified organisms and their

applications.

Unit 1	Introduction	6 Lectures
	1.1 Applications and Uses of Statistics	
	1.2 Population and sample, Different	
	types of Sample	
	1.3 Exercise and Problems.	
Unit 2	Data classification	3Lectures
	2.1 Some important terms (Class	
	frequency, class- limits, Class-	
	width, class –mark)	
	2.2 Frequency distribution,	
	Cumulative frequency, Graphical	
	representation of data (Histogram,	
	Pie-Diagram, Ogive- Curve.)	
	2.3 Exercise & Problems.	
Unit 3	Measures of central tendancy	3Lectures
	3.1Concept of central tendency, Types	
	of central tendency (Arithmetic	
	mean, Median and mode) combined	
	mean.	
	3.2 Partition values (Quartiles,	
	Deciles, and Percentiles)	
Unit 4	3.3 Exercise & Problems.	2L octumes
Unit 4	Measures of Dispersion	3Lectures
	4.1 Concept of dispersion, absolute	
	and relative measure of dispersion.4.2 Different measures of dispersion	
	(Range, Quartile- Deviation,	
	Variance and standard-deviation,	
	Coefficient of Variation) combined	
	variance	
	4.3 Exercise & Problems.	
	1.5 LACICISC & HOUICIIIS.	

Unit 5	Correlation and Regression	3Lectures
	5.1Bivariate data, concept of correlation, Types of Correlation, Scatter diagram, Karl Pearson's coefficient of correlation and its properties. 5.2 Concept of regression, Linear regression, regression Coefficients and its properties. 5.3 Exercise & Problems.	
Unit 6	Probability	5Lectures
	6.1Some important terms (types of experiment, sample Space and types of sample space, events and types of events.) 6.2 Definition of probability (mathematical and classical) Conditional probability. Concept of random variable Univariate probability Distribution and its mathematical expectation. 6.3 Some standard probability distributions (binomial, Poisson and normal)their probability distribution, mean, variance, and properties of these distribution. 6.4 Exercise & Problems.	
Unit 7	Test of Hypothesis	7Lectures
	 7.1 Some important terms (hypothesis, types of hypothesis, Test, Critical region, acceptance region, type I error, type II error, level of significance, p- value) 7.2 Test for mean and equality of two population means, Test for proportion and equality of two population proportions. 7.3 chi-square test for goodness of fit, Unpaired and paired t test. F test for equality of two population variances. 7.4 Exercise & Problems. 	

Unit 1	Animal cloning	7 Lectures
	Importance, Preparing DNA, Vector types – Fish, Pelement, Baculovirus vectors, Mammalian virus vectors, Different transfection methods, Transgene integration	
Unit 2	Detection of Transgenics and transgene function	4 Lectures
	Identification of Transgenic animals, Analysis of transgene integration, Detection of mRNA expression, Protein expression assays	

Unit 3	Expression of cloned proteins in Animal cells	3 Lectures
	Expression vectors, Overproduction of recombinant proteins, Downstream processing	
Unit 4	Transgenic animals	5 Lectures
	 4.1 Transgenic mice as animal model and their applications, Transgenesis in other animals – cattles, fish sheep, Transgenic clone-Dolly 4.2 Position effects, Bioreactors 4.3 Pigs in xenotransplantation 4.4 Transgenic organisms to interrupt disease cycles – Transgenic snails, mosquitoes etc. 	
Unit 5	Hybridoma technology	3 Lectures
	Somatic cell fusion, Production of monoclonal antibodies and its Applications	
Unit 6	Tissue engineering and modelling	3 Lectures
	6.1 Fundamentals and basic aspects of TE.6.2 Basic aspects regarding artificial organs, embryonic and adult stem cells, Applications of stem cells	
Unit 7	Animal Husbandary	4 Lectures
	7.10verview oflivestock breed 7.2Artificial breeding – Methods of semen collection, insemination, cryopreservation of germ cells 7.3IVF and embryo transfer	
Unit 8	Biosafety issues and Bioethics in Animal cloning	1 Lecture

References:

- 1. Principles And Practice of Biostatistics: Dr J.V. Dixit
- 2. . Statistical Methods: Snedecor G.W. & Cochran W.G.
- 3. Statistical Methods: Dixon W.S. and Massey
- 4. Robert Lanza et al. Essentials of Stem Cell Biology", Academic Press, 2nd edition, 2006.USA
- 5. Text book of Animal Husbandary, 8th edition, (1998) G.C. Banerjee, Oxford and IBH Publishin co.Pvt. Ltd. India
- 6. Molecular Biotechnology: 4th edition. (2010), Glick B.R., Pasternak J.J., Patten C. L., ASM press, USA
- 7. Gene Transfer to Animal Cells, 1st edition (2005), R. M. Twyman, Taylor & Francis USA.

Progressive Education Society's Modern College of Arts, Science and Commerce, Shivajinagar, Pune – 5

P.G. Part I Year of M.Sc. Zoology SEM II (2023 Course under NEP 2020)

Course Code: 23ScZooP222 Course Name: Biostatistics and Medical Microbiology

Teaching Scheme: TH4Hours/Week Credit - 04C

Examination Scheme: CIA: 50Marks End-Sem: 50Marks

Course Objectives:

• To study basic biostatistics

• To study different microbes for their clinical significance

Course Outcomes:

On completion of the course, student will be able to-

• Apply different statistical tools by studying the data

• Understand the importance of different bacterial, fungal and viral organisms.

• Gain awareness of different bacterial, viral and fungal infections.

Unit 1	Introduction	6 Lectures
	1.1 Applications and Uses of Statistics	
	1.2 Population and sample, Different	
	types of Sample	
	1.3 Exercise and Problems.	
Unit 2	Data classification	3Lectures
	2.1 Some important terms (Class	
	frequency, class- limits, Class-	
	width, class -mark)	
	2.2 Frequency distribution,	
	Cumulative frequency, Graphical	
	representation of data (Histogram,	
	Pie-Diagram, Ogive- Curve.)	
	2.3 Exercise & Problems.	
Unit 3	Measures of central tendancy	3Lectures
	3.1Concept of central tendency, Types	
	of central tendency (Arithmetic	
	mean, Median and mode) combined	
	mean.	
	3.2 Partition values (Quartiles,	
	Deciles, and Percentiles)	
	3.3 Exercise & Problems.	
Unit 4	Measures of Dispersion	3Lectures
	4.1 Concept of dispersion, absolute	
	and relative measure of dispersion.	
	4.2 Different measures of dispersion	
	(Range, Quartile- Deviation,	
	Variance and standard-deviation,	
	Coefficient of Variation) combined	
	variance	
	4.3 Exercise & Problems.	
Unit 5	Correlation and Regression	3Lectures

	5.1Bivariate data, concept of correlation, Types of Correlation, Scatter diagram, Karl Pearson's coefficient of correlation and its properties. 5.2 Concept of regression, Linear regression, regression Coefficients and its properties. 5.3 Exercise & Problems.	
Unit 6	Probability	5Lectures
	6.1Some important terms (types of experiment, sample Space and types of sample space, events and types of events.) 6.2 Definition of probability (mathematical and classical) Conditional probability. Concept of random variable Univariate probability Distribution and its mathematical expectation. 6.3 Some standard probability distributions (binomial, Poisson and normal)their probability distribution, mean, variance, and properties of these distribution. 6.4 Exercise & Problems.	
Unit 7	Test of Hypothesis	7Lectures
	7.1 Some important terms (hypothesis, types of hypothesis, Test, Critical region, acceptance region, type I error, type II error, level of significance, p- value) 7.2 Test for mean and equality of two population means, Test for proportion and equality of two population proportions. 7.3 chi-square test for goodness of fit, Unpaired and paired t test. F test for equality of two population variances. 7.4 Exercise & Problems.	

Medical Microbiology

Wicaicai i	viicioolology	
Unit 1	Bacterial diseases with respect to causative agents, general characters,	13
	detection methods, therapeutic agents and prophylaxis. Handling and	Lectures
	disposing of infectious material	
	a. Helicobacter pylori	
	b. Campylobacter jejuni	
	c. Mycobactertium tuberculosis	
	d. Acinetobacter boumanii	
	e. Actinomycetes bovis/israelli	
Unit 2	Viral diseases with respect to causative agents, general characters,	9 Lectures
	detection method, therapeutic agents and prophylaxis. Handling and	

	disposing of infectious material.	
Unit 2	a. Hepatitis B b. H1N1 c. HIV d. Oncoviruses e. Ebola Virus	8 Lectures
Unit 3	Fungal diseases with respect to causative agents, general characters, detection methods, therapeutic agents and prophylaxis. Handling and disposing of infectious material	8 Lectures
	a. Candida albicans b. Trichophyton metagrophytes c. Aspergillus flavus	

References:

- 1. Asif M., Alvi I.A. and Rehman S.U. (2018) Insight into Acinetobacter baumannii: pathogenesis, global resistance, mechanisms of resistance, treatment options, and alternative modalities. Infect Drug Resist. 11:1249-1260.
- 2. Available from: https://www.intechopen.com/books/mycobacterium-research-anddevelopment/virulence-factors-and-pathogenicity-of-mycobacterium.
- 3. Delogu G., Sali M. and Fadda G. (2013) The biology of Mycobacterium tuberculosis infection. Mediterr J Hematol Infect Dis. 16; 5(1):e2013070.
- 4. Kao C. Y., Sheu B. S. and Wu J. J. (2006) Helicobacter pylori infection: An overview of bacterial virulence factors and pathogenesis. Biomedical Journal 39, 1, 14-23
- 5. Lee C.R., Lee J.H, Park M., Park K.S., Bae I.K., Kim Y.B., Cha C.J., JeongB.C. and Lee S.H. (2017) Biology of Acinetobacter baumannii: Pathogenesis, Antibiotic Resistance Mechanisms, and Prospective Treatment Options. Front Cell Infect Microbiol. 13; 7:55.
- 6. Levin R. E. (2007) Campylobacter jejuni: A Review of its Characteristics, Pathogenicity, Ecology, Distribution, Subspecies Characterization and Molecular Methods of Detection, Food Biotechnology, 21(4): 271-347
- 7. Chisari F.V., Isogawa M. and Wieland S.F. (2010) Pathogenesis of Hepatitis B virus infection. Pathol Biol (Paris). 58(4):258-66.
- 8. Falasca L., Agrati C., Petrosillo N., Di Caro A., Capobianchi M.R., Ippolito G. and Piacentini M. (2015) Molecular mechanisms of Ebola virus pathogenesis: focus on cell death. Cell Death Differ. 22(8):1250-1259.
- 9. Jilani T.N., Jamil R.T., Siddiqui AH. (2020) H1N1 Influenza (Swine Flu) In: StatPearls [Internet]. Treasure Island (FL): StatPearls. Available from: https://www.ncbi.nlm.nih.gov/books/NBK513241/ 10. Simon V., Ho D.D. and Abdool Karim Q. (2006) HIV/AIDS epidemiology, pathogenesis, prevention, and treatment. Lancet. 5; 368(9534):489-504.
- 11. Hedayati M.T., Pasqualotto A.C., Warn P.A., Bowyer P. and Denning DW. (2007) Aspergillus flavus: human pathogen, allergen and mycotoxin producer. Microbiology. 153(Pt 6):1677-1692.
- 12. Jabra-Rizk M.A., Kong E.F., Tsui C., Nguyen M. H., Clancy C. J., Fidel P. L., Jr. and Noverr M. (2016) Candida albicans Pathogenesis: Fitting within the Host-Microbe Damage Response Framework. Infect Immun. 84(10):2724-2739.
- 13. Principles And Practice of Biostatistics: Dr J.V. Dixit
- 14. . Statistical Methods: Snedecor G.W. & Cochran W.G.
- 15. Statistical Methods: Dixon W.S. and Massey