Modern College of Arts, Science and Commerce (Autonomous)

Shivajinagar, Pune - 5

First Year of B.Sc. (2023 Course under NEP 2020)

Course Code: 23ScPhyU1101 Course Name: Mechanics and Properties of Matter

Teaching Scheme: 4 Hours/Week Credit: 04

Examination Scheme: CIA: 40 Marks End-Sem: 60 Marks

Prerequisite Courses:

• Familiarity with 10+2 level physics syllabus

• Familiarity with basic concepts of Motion, work and Energy, Fluid Mechanics, Properties of Matter

Course Objectives:

- To Study and. Demonstrate an understanding of Newton's laws and applying them in calculations of the motion of simple systems.
- Use the free body diagrams to analyze the forces on the object.
- Understand the concepts of energy, work, power, the concepts of conservation of energy and be able to perform calculations using them.
- Understand the concepts of elasticity and be able to perform calculations using them.
- To learn/Understand the concepts of
 - 1. Surface tension and viscosity and be able to perform calculations using them.
 - 2. Use of Bernoulli's theorem in real life problems.
 - 3. Demonstrate quantitative problem-solving skills in all the topics covered.

Course Outcomes:

CO No	Course Outcomes (COs)	Bloom's Cognitive level
CO 1	Define Newton's laws and apply them in calculations of the motion of simple systems.	1
CO 2	Summarize the Applications of Mechanics and Fluid Dynamics	2
CO 3	Apply Newton's Law and Basics Fluid dynamics in real life problems.	3
CO 4	Explain the free body diagrams to analyze the forces on the object.	4
CO 5	Evaluate different dynamics and static physical quantities for a given situation	5
CO 6	Solve the problems related to concepts of energy, work, power, the concepts of conservation of energy and being able to perform calculations using them.	6

Course Contents

Unit 1	Units, Physical Quantities, and Vectors	4
Ont I	Standards and Units	T
	Consistency and Conversions	
	Uncertainty and Significant	
	Figures	
	Estimates and Orders of	
	Magnitude	
	 Vectors and Vector Addition 	
	 Components of Vectors 	
	Unit Vectors	
	Products of Vectors	
Unit 2	Motion Along a Straight Line	4
	 Displacement, Time, and Average 	
	Velocity	
	Instantaneous Velocity	
	Average and Instantaneous Academticar	
	AccelerationMotion with Constant Acceleration	
	 Freely Falling Bodies 	
	Velocity and Position by	
	Integration	
Unit 3	Motion in Two and Three Dimensions	5
	Position and Velocity Vectors	
	The Acceleration Vector	
	Projectile Motion	
	 Motion in a Circle 	
	Relative Velocity	
Unit 4	Newton's Laws of Motion	4
	 Force and Interactions 	
	Newton's First Law	
	Newton's Second Law	
	Mass and Weight	
	Newton's Third Law Free Pady Diagrams	
Unit 5	Free-Body Diagrams Applying Newton's Laws	5
Unit 5	Applying Newton's Laws ● Newton's First Law: Particles in	3
	Equilibrium	
	Using Newton's Second Law:	
	Dynamics of Particles	
	Frictional Forces	
	Dynamics of Circular Motion	
	 The Fundamental Forces of Nature 	
Unit 6	Work and Kinetic Energy	5
	Work	
	 Kinetic Energy and the 	
	Work-Energy Theorem	
	Work and Energy with Varying	
	Forces	
	• Power	

Unit 7 Potential Energy and Energy Conservation Gravitational Potential Energy Elastic Potential Energy Conservative and Nonconservative Forces Forces Force and Potential Energy Energy Diagrams	
 Elastic Potential Energy Conservative and Nonconservative Forces Force and Potential Energy 	
 Conservative and Nonconservative Forces Force and Potential Energy 	
Forces • Force and Potential Energy	
Force and Potential Energy	
Unit 8 Momentum, Impulse, and Collisions 5	
Momentum and Impulse	
 Conservation of Momentum 	
 Momentum Conservation and 	
Collisions	
Elastic Collisions	
• Center of Mass	
Rocket Propulsion	
Unit 9 Rotation of Rigid Bodies 5	
Angular Velocity and Acceleration	
Rotation with Constant Angular	
Acceleration Polytime Linear and Appellan	
Relating Linear and Angular Kinematics	
Energy in Rotational Motion	
Parallel-Axis Theorem	
Moment-of-Inertia Calculations	
Unit 10 Dynamics of Rotational Motion 5	
• Torque	
Torque and Angular Acceleration	
for a Rigid Body	
Rigid-Body Rotation About a	
Moving Axis	
 Work and Power in Rotational 	
Motion	
Angular Momentum	
Conservation of Angular	
Momentum	
• Gyroscopes and Precession	
Unit 11 Equilibrium and Elasticity 5	
• Conditions for Equilibrium	
Center of GravitySolving Rigid-Body Equilibrium	
Problems 3	
Stress, Strain, and Elastic ModuliElasticity and Plasticity	
Unit 12 Fluid Mechanics 4	
• Density	
Pressure in a Fluid	
Buoyancy	
• Fluid Flow	
Bernoulli's Equation	
Viscosity and Turbulence	

Unit 13	Gravitation	4
	 Newton's Law of Gravitation Weight Gravitational Potential Energy The Motion of Satellites Kepler's Laws and the Motion of Planets Spherical Mass Distributions Apparent Weight and the Earth's Rotation 	

- 1. Sear's and Zimansky's University Physics with Modern Physics, Young and Freedman
- 2. Fundamentals of Physics, Resnick and Halliday
- 3. Classical Mechanics, J.C. Upadhyaya, Himalaya publishing Houses, 2nd Edition of 2005.
- 4. Introduction to Classical Mechanics, R. G. Takawale, P. S. Puranik, Tata McGraw Hill publishing Company Ltd., New Delhi.

Modern College of Arts, Science and Commerce,

Shivajinagar, Pune - 5

First Year of B.Sc. (2023 Course under NEP 2020)

Teaching Scheme: 4 Hours/Week Credit: 02

Examination Scheme: CIA: 20 Marks End-Sem: 30 Marks

Prerequisite Courses:

• Familiarity with 10+2 level physics syllabus

• Familiarity with basic Science Instruments / Apparatus

Course Objectives:

- To gain practical knowledge by applying the experimental methods to correlate with the Physics theory.
- To learn the usage of electrical and optical systems for various measurements.
- Apply the analytical techniques and graphical analysis to the experimental data.
- To develop intellectual communication skills and discuss the basic principles of scientific concepts in a group.

Course Outcomes:

On completion of the course, student should be able to—

CO No	Course Outcomes (COs)	Bloom's Cognitive level
CO 1	Define Newton's laws and apply them in calculations of the motion of simple systems.	1
CO 2	Use the different measuring devices and meters to record the data with precision	2
CO 3	Apply the various procedures and techniques for the experiments. Apply the mathematical concepts/equations to obtain quantitative results	3
CO 4	Acquire technical and manipulative skills in using laboratory equipment, tools, and materials.	4
CO 5	Develop basic communication skills through working in groups in performing the laboratory experiments and by interpreting the result	5
CO 6	Demonstrate a deeper understanding of abstract concepts and theories gained by experiencing and visualizing them as authentic phenomena.	6

 Measurements using Vernier calipers. Measurements using Micrometer screw gauge. Measurements using Travelling Microscope. Measurements using Spectrometer. M. I. of flywheel. Flat spiral spring M. L. of Dieg by Torsional 	
 7. M. I. of Disc by Torsional Oscillations 8. Modulus of rigidity of Disc by Torsional Oscillations 9. Surface Tension by Capillary Rise Method 10. Coefficient of Viscosity by Stokes' Method 	
11. Study of law of Parallel axis for moment of inertia12. Calculate g by using simple pendulum13. Activity, Study Tour Report14. Assignments, Demonstration15. Virtual Lab etc.	

- 1. An Advanced course in Practical Physics, D. Chattopadhyay and P. C. Rakshit
- 2. B. Sc. Practical Physics, C.L.Arora
- 3. B. Sc. Practical Physics, Harnam Singh
- 4. University Physics with Modern Physics, Sears and Zemansky
- 5. Fundamental of Physics, Halliday and Resnick
- 6. Fundamental of Optics, Francis Jenkins, Harvey White

Modern College of Arts, Science and Commerce, Shivajinagar, Pune - 5 First Year of B.Sc. (2023 Course under NEP 2020)

Teaching Scheme: 2 Hours/Week Credit: 02

Examination Scheme: CIA: 20 Marks End-Sem: 30 Marks

Course Prerequisites:

• Familiarization of basic knowledge of Renewable Energy

• Familiarity with basic Science Instruments / Apparatus

Course Objectives:

1. To create awareness among the students about the different types of non-conventional energy resources and emphasize its importance

2. Apply the concept and use of knowledge of the renewable energy sources course to real-life problems.

Course Outcomes:

CO No	Course Outcomes (COs)	Bloom's Cognitive level
CO 1	Understand different types of storage technologies	1
CO 2	Design a thermal storage system	2
CO 3	Identify the basic principles of electricity generation from wind energy systems and photovoltaic systems.	3
CO 4	Differentiate between generation of electricity from fossil fuels and renewable resources	4
CO 5	Review the present energy scenario and the need for energy storage	5
CO 6	Solve problems related to wind energy systems and	6

PV systems.	

Unit 1	Introduction to Energy	15
	Introduction to Energy: Definition and	
	units of energy, Forms of energy,	
	Conservation of energy, Conventional	
	energy sources, Role of energy in	
	economic development and social	
	transformation.	
	Global Energy Scenario: Energy	
	consumption in various sectors,	
	projected energy consumption for the	
	next century, exponential increase in	
	energy consumption, impact of	
	exponential rise in energy usage on	
	global economy.	
Unit 2	Indian Energy Scenario	15
Offit 2		15
Onit 2	Indian Energy Scenario: Energy	13
Onit 2	Indian Energy Scenario: Energy resources available in India, urban	10
Onit 2	Indian Energy Scenario: Energy resources available in India, urban and rural energy consumption, Final	
Oilit 2	Indian Energy Scenario: Energy resources available in India, urban and rural energy consumption, Final Energy Consumption, Energy Needs	
Onit 2	Indian Energy Scenario: Energy resources available in India, urban and rural energy consumption, Final Energy Consumption, Energy Needs of Growing Economy, Long Term	
Onit 2	Indian Energy Scenario: Energy resources available in India, urban and rural energy consumption, Final Energy Consumption, Energy Needs of Growing Economy, Long Term Energy Scenario, Energy Pricing,	
Onit 2	Indian Energy Scenario: Energy resources available in India, urban and rural energy consumption, Final Energy Consumption, Energy Needs of Growing Economy, Long Term Energy Scenario, Energy Pricing, Energy Sector Reforms, Energy	
Oilit 2	Indian Energy Scenario: Energy resources available in India, urban and rural energy consumption, Final Energy Consumption, Energy Needs of Growing Economy, Long Term Energy Scenario, Energy Pricing, Energy Sector Reforms, Energy Security, Energy Conservation and its	
Oilit 2	Indian Energy Scenario: Energy resources available in India, urban and rural energy consumption, Final Energy Consumption, Energy Needs of Growing Economy, Long Term Energy Scenario, Energy Pricing, Energy Sector Reforms, Energy Security, Energy Conservation and its Importance, Energy Strategy for the	
Onit 2	Indian Energy Scenario: Energy resources available in India, urban and rural energy consumption, Final Energy Consumption, Energy Needs of Growing Economy, Long Term Energy Scenario, Energy Pricing, Energy Sector Reforms, Energy Security, Energy Conservation and its Importance, Energy Strategy for the Future, Energy Conservation	
Onit 2	Indian Energy Scenario: Energy resources available in India, urban and rural energy consumption, Final Energy Consumption, Energy Needs of Growing Economy, Long Term Energy Scenario, Energy Pricing, Energy Sector Reforms, Energy Security, Energy Conservation and its Importance, Energy Strategy for the Future, Energy Conservation Act-2001 and its Features, National	
Onit 2	Indian Energy Scenario: Energy resources available in India, urban and rural energy consumption, Final Energy Consumption, Energy Needs of Growing Economy, Long Term Energy Scenario, Energy Pricing, Energy Sector Reforms, Energy Security, Energy Conservation and its Importance, Energy Strategy for the Future, Energy Conservation	

- 1. Non -Conventional Energy Resources, third edition by B. H. Khan, Mc Graw Hil Education Pvt. Ltd
 - 2. Silicon solar cells: advanced principles and practice. Sydney, M. Green, Bridge Printery, 1995.
 - 3. Third Generation Photovoltaics. Berlin, Germany, M. Green, Springer-Verlag, 2003.
 - 4. Crystalline silicon solar cells: advanced surface passivation and analysis, Aberle A. G.,

Sydney, Centre for Photovoltaic Engineering, UNSW, 1999.

- 5. The physics of solar cells, J. Nelson, Imperial college press, 2006.
- 5. G. D.Rai,-"Non Conventional Energy Sources", Khanna publisher, New Delhi

Modern College of Arts, Science and Commerce, Shivajinagar, Pune - 5

First Year of B.Sc. (2023 Course under NEP 2020)

Course Code: 23ScPhyU1501 Course Name: Lab Course on Energy Studies I

Teaching Scheme: 4 Hours/Week Credit: 02

Examination Scheme: CIA: 20 Marks End-Sem: 30 Marks

Prerequisite Courses:

• Familiarity with Renewable and Non-Renewable Energy Sources

Course Objectives:

- To study the basic concepts regarding fundamentals of renewable energy
- To impart knowledge about importance of renewable energy and its practical applications

Course Outcomes:

On completion of the course, student should be able to-

CO No	Course Outcomes (COs)	Bloom's Cognitive level
CO 1	Operational experience on solar cooker	1
CO 2	Measurement of I-V characteristic of Mono-Crystalline and Poly-Crystalline PV module	2
CO 3	Measurement of illumination using Lux meter	3
CO 4	Learn the functioning of box-type solar cooker, hybrid solar cooker	4

CO 5	Covers the modern knowledge and on-field practices of solar PV systems.	5
CO 6	Characterize the biomass qualitatively and quantitatively	6

Unit 1		15
	1. Global Energy Scenario (Survey)	
	2. Solar Radiation and its	
	measurements	
	3. Study of Photovoltaic Characteristics	
	of Solar Cell (Variation of Intensity,	
	Distance between Source and Solar	
	Cell, and load)	
	4. Study of power versus load	
	characteristics of Solar Power	
	Photovoltaic Systems and	
	5. Study of Series and Parallel	
	Combination of Solar Photovoltaic	
	panels.	
	6. Study of Flat Plate Collector	
	7. Study of Evacuated Tube Collector	
	8. Study of optical properties of	
	selective coatings.	
	9. Study of Solar Dryer (Hot Air	
	Collector)	
	10. Study of Solar Still.	
	11. Study of solar concentrators	
	12. Study of Wind Energy and	
	Technology	
	13. Estimation of energy content in the	
	wind	
	14. Demonstration (Lab Safety)	
	15. Visit to solar energy farm (Solar PV	
	plant/Wind energy/ Thermal energy/	
	Hydroelectric/Co generation plant).	

- 1. Sukhatme S P, Solar Energy: principles of Thermal Collection and Storage, TataMcGrawHill.
- 2. Duffie J A, Beckman W A, Solar Engineering of Thermal Processes, Johnn Wiley.

- 3. Goswami D Y, Frank Kreith and Kreider J F, Principles of Solar Engineering, Taylor and Francis, USA.
- 4. Garg H P, Prakash S, Solar Energy: Fundamental and Application, Tata McGrowHill, New Delhi.
- 5. Kreith F, Kreider J F, Principles of Solar Engineering, McGrawHill.
- 6. Kreider J F, Kreith F, Solar Energy Handbook, McGrawHill.
- 7. Bent Sorensen, Renewable Energy, Academic press, New York.
- 8. Tiwari, G N, Solar Energy, Fundamentals Design, Modeling and Applications, Narosa, New Delhi

Modern College of Arts, Science and Commerce, Shivajinagar, Pune - 5

First Year of B.Sc. (2023 Course under NEP 2020)

Course Code: 23ScPhyU1601 Course Name: Basic Instrumentation Skills

Teaching Scheme: 4 Hours/Week Credit: 02

Examination Scheme: CIA: 20 Marks End-Sem: 30 Marks

Prerequisite Courses:

• Familiarity with courses in first year B.Sc.

• Familiarity with topics learned in 23ScPhyU1101

Course Objectives:

- To gain practical knowledge by applying the experimental methods to correlate with the Physics theory.
- To learn the usage of optical systems for various measurements.
- Apply the analytical techniques and graphical analysis to the experimental data.
- To develop intellectual communication skills and discuss the basic principles of scientific concepts in a group.

Course Outcomes:

On completion of the course, student should be able to-

CO No	Course Outcomes (COs)	Bloom's Cognitive level
CO 1	Find the various procedures and techniques for the experiments related to topics in 23ScPhyU3102.	1
CO 2	Generalize the mathematical concepts/equations to obtain quantitative results.	2
CO 3	Integrate the basic communication skills through working in groups in performing the laboratory experiments and by interpreting the result.	3
CO 4	Correlate the technical and evaluative skills using laboratory equipment, tools, and materials.	4
CO 5	Test practical knowledge by applying the experimental	5

	methods to correlate with the Physics theory.	
CO 6	Adapt the knowledge of mechanical, electrical and optical systems for various measurements.	6

Unit 1		15
	1. Units and Dimensions in physics	
	experiments.	
	Measurements and Error analysis in Physics	
	3. Study of Digital Multimeter	
	4. Study of CRO	
	5. Study of Signal Generator	
	, ,	
	6. Study of Potential divider circuit	
	7. Study of Voltmeter.	
	8. Study of Ammeter.	
	9. Study of Bread Board	
	10. Study of DSO	
	11. Study of Transformer	
	12. Study of lenses	
	13. Study of Power Supply	
	14. Study of different types of sensors	
	15. Study of Telescope	

- 1. An Advanced course in Practical Physics, D. Chattopadhyay and P. C. Rakshit
- 2. B. Sc. Practical Physics, C.L.Arora
- 3. B. Sc. Practical Physics, Harnam Singh
- 4. University Physics with Modern Physics, Sears and Zemansky
- 5. Fundamental of Physics, Halliday and Resnick
- 6. Fundamental of Optics, Francis Jenkins, Harvey White

Semester II Syllabus

Progressive Education Society's

Modern College of Arts, Science and Commerce,

Shivajinagar, Pune - 5

First Year of B.Sc. (2023 Course under NEP 2020)

Course Code: 23ScPhyU2101 Course Name: Electricity and Magnetism

Teaching Scheme: 4 Hours/Week Credit: 04

Examination Scheme: CIA: 40 Marks End-Sem: 60 Marks

Prerequisite Courses:

• Familiarity with 10+2 level physics syllabus

• Familiarity with basic concepts of calculus

Course Objectives:

• To Study Basics of Electrostatics and Magnetostatics in Vacuum and in Dielectric Media

• To enrich knowledge of Electricity and Magnetism through problem solving

Course Outcomes:

On completion of the course, student will be able to-

• Apply Classical Theory of Electromagnetics to simple systems

Course Contents

Unit 1	Electric Charge and Electric Field	5
	 Electric Charge Conductors, Insulators, and Induced Charges Coulomb's Law Electric Field and Electric Forces Electric-Field Calculations Electric Field Lines Electric Dipoles 	
Unit 2	Gauss's Law	6
	 Charge and Electric Flux Calculating Electric Flux Gauss's Law Applications of Gauss's Law Charges on Conductors 	
Unit 3	Electric Potentials	5
	 Electric Potential Energy Electric Potential Calculating Electric Potential Equipotential Surfaces Potential Gradient 	

Unit 4	Capacitance and Dielectrics	6
Ont 4	Capacitance and Detectives Capacitors and Capacitance	0
	 Capacitors and Capacitance Capacitors in Series and Parallel 	
	 Energy Storage in Capacitors and 	
	Electric-Field Energy	
	Dielectrics	
	Molecular Model of Induced	
	Charge	
	Gauss's Law in Dielectrics	
Unit 5	Current, Resistance, and Electromotive	5
Omt 5	Force	
	• Current	
	Resistivity	
	Resistance	
	 Electromotive Force and Circuits 	
	Energy and Power in Electric	
	Circuits	
	Theory of Metallic Conduction	
Unit 6	Direct-Current Circuits	5
	Resistors in Series and Parallel	
	Kirchhoff's Rules	
	Electrical Measuring Instruments	
	R-C Circuits	
	Power Distribution Systems	
Unit 7	Magnetic Field and Magnetic Forces	5
Unit 7	Magnetism	5
Unit 7	MagnetismMagnetic Field	5
Unit 7	MagnetismMagnetic FieldMagnetic Field Lines and	5
Unit 7	 Magnetism Magnetic Field Magnetic Field Lines and Magnetic Flux 	5
Unit 7	 Magnetism Magnetic Field Magnetic Field Lines and Magnetic Flux Motion of Charged Particles in a 	5
Unit 7	 Magnetism Magnetic Field Magnetic Field Lines and Magnetic Flux Motion of Charged Particles in a Magnetic Field 	5
Unit 7	 Magnetism Magnetic Field Magnetic Field Lines and Magnetic Flux Motion of Charged Particles in a Magnetic Field Applications of Motion of Charged 	5
Unit 7	 Magnetism Magnetic Field Magnetic Field Lines and Magnetic Flux Motion of Charged Particles in a Magnetic Field Applications of Motion of Charged Particles 	5
Unit 7	 Magnetism Magnetic Field Magnetic Field Lines and Magnetic Flux Motion of Charged Particles in a Magnetic Field Applications of Motion of Charged Particles Magnetic Force on a 	5
Unit 7	 Magnetism Magnetic Field Magnetic Field Lines and Magnetic Flux Motion of Charged Particles in a Magnetic Field Applications of Motion of Charged Particles Magnetic Force on a Current-Carrying Conductor 	5
Unit 7	 Magnetism Magnetic Field Magnetic Field Lines and Magnetic Flux Motion of Charged Particles in a Magnetic Field Applications of Motion of Charged Particles Magnetic Force on a Current-Carrying Conductor Force and Torque on a Current 	5
Unit 7	 Magnetism Magnetic Field Magnetic Field Lines and Magnetic Flux Motion of Charged Particles in a Magnetic Field Applications of Motion of Charged Particles Magnetic Force on a Current-Carrying Conductor Force and Torque on a Current Loop 	5
Unit 7	 Magnetism Magnetic Field Magnetic Field Lines and Magnetic Flux Motion of Charged Particles in a Magnetic Field Applications of Motion of Charged Particles Magnetic Force on a Current-Carrying Conductor Force and Torque on a Current Loop The Direct-Current Motor 	5
	 Magnetism Magnetic Field Magnetic Field Lines and Magnetic Flux Motion of Charged Particles in a Magnetic Field Applications of Motion of Charged Particles Magnetic Force on a Current-Carrying Conductor Force and Torque on a Current Loop The Direct-Current Motor The Hall Effect 	
Unit 7 Unit 8	 Magnetism Magnetic Field Magnetic Field Lines and Magnetic Flux Motion of Charged Particles in a Magnetic Field Applications of Motion of Charged Particles Magnetic Force on a Current-Carrying Conductor Force and Torque on a Current Loop The Direct-Current Motor The Hall Effect Sources of Magnetic Field	5
	 Magnetism Magnetic Field Magnetic Field Lines and Magnetic Flux Motion of Charged Particles in a Magnetic Field Applications of Motion of Charged Particles Magnetic Force on a Current-Carrying Conductor Force and Torque on a Current Loop The Direct-Current Motor The Hall Effect Sources of Magnetic Field Magnetic Field of a Moving 	
	 Magnetism Magnetic Field Magnetic Field Lines and Magnetic Flux Motion of Charged Particles in a Magnetic Field Applications of Motion of Charged Particles Magnetic Force on a Current-Carrying Conductor Force and Torque on a Current Loop The Direct-Current Motor The Hall Effect Sources of Magnetic Field Magnetic Field of a Moving Charge 	
	 Magnetism Magnetic Field Magnetic Field Lines and Magnetic Flux Motion of Charged Particles in a Magnetic Field Applications of Motion of Charged Particles Magnetic Force on a Current-Carrying Conductor Force and Torque on a Current Loop The Direct-Current Motor The Hall Effect Sources of Magnetic Field Magnetic Field of a Moving Charge Magnetic Field of a Current 	
	 Magnetism Magnetic Field Magnetic Field Lines and Magnetic Flux Motion of Charged Particles in a Magnetic Field Applications of Motion of Charged Particles Magnetic Force on a Current-Carrying Conductor Force and Torque on a Current Loop The Direct-Current Motor The Hall Effect Sources of Magnetic Field Magnetic Field of a Moving Charge Magnetic Field of a Current Element 	
	 Magnetism Magnetic Field Magnetic Field Lines and Magnetic Flux Motion of Charged Particles in a Magnetic Field Applications of Motion of Charged Particles Magnetic Force on a Current-Carrying Conductor Force and Torque on a Current Loop The Direct-Current Motor The Hall Effect Sources of Magnetic Field Magnetic Field of a Moving Charge Magnetic Field of a Current Element Magnetic Field of a Straight 	
	 Magnetism Magnetic Field Magnetic Field Lines and Magnetic Flux Motion of Charged Particles in a Magnetic Field Applications of Motion of Charged Particles Magnetic Force on a Current-Carrying Conductor Force and Torque on a Current Loop The Direct-Current Motor The Hall Effect Sources of Magnetic Field Magnetic Field of a Moving Charge Magnetic Field of a Straight Current-Carrying Conductor 	
	 Magnetism Magnetic Field Magnetic Field Lines and Magnetic Flux Motion of Charged Particles in a Magnetic Field Applications of Motion of Charged Particles Magnetic Force on a Current-Carrying Conductor Force and Torque on a Current Loop The Direct-Current Motor The Hall Effect Sources of Magnetic Field Magnetic Field of a Moving Charge Magnetic Field of a Straight Current-Carrying Conductor Force Between Parallel Conductors 	
	 Magnetism Magnetic Field Magnetic Field Lines and Magnetic Flux Motion of Charged Particles in a Magnetic Field Applications of Motion of Charged Particles Magnetic Force on a Current-Carrying Conductor Force and Torque on a Current Loop The Direct-Current Motor The Hall Effect Sources of Magnetic Field Magnetic Field of a Moving Charge Magnetic Field of a Straight Current-Carrying Conductor 	

	Ampere's LawApplications of Ampere's LawMagnetic Materials	
Unit 9	Electromagnetic Induction	6
	 Induction Experiments Faraday's Law Lenz's Law Motional Electromotive Force Induced Electric Fields Eddy Currents Displacement Current and Maxwell's Equations Superconductivity 	
Unit 10	Inductance	6
	 Mutual Inductance Self-Inductance and Inductors Magnetic-Field Energy The R-L Circuit The L-C Circuit The L-R-C Series Circuit 	
Unit 11	Alternating Current	6
	 Phasors and Alternating Currents Resistance and Reactance The L-R-C Series Circuit Power in Alternating-Current Circuits Resonance in Alternating-Current Circuits Transformers 	

- Sear's and Zimansky's University Physics with Modern Physics, Young and Freedman
 Fundamentals of Physics, Resnick and Halliday

Modern College of Arts, Science and Commerce,

Shivajinagar, Pune - 5

First Year of B.Sc. (2023 Course under NEP 2020)

Course Code: 23ScPhyU2102 Course Name: Experiments based on Electricity and Magnetism

Teaching Scheme: 4 Hours/Week Credit: 02

Examination Scheme: CIA: 20 Marks End-Sem: 30 Marks

Prerequisite Courses:

• Familiarity with 10+2 level physics syllabus

• Familiarity with basic Science Instruments / Apparatus

Course Objectives:

- To gain practical knowledge by applying the experimental methods to correlate with the Physics theory.
- To learn the usage of electrical and optical systems for various measurements.
- Apply the analytical techniques and graphical analysis to the experimental data.
- To develop intellectual communication skills and discuss the basic principles of scientific concepts in a group.

Course Outcomes:

On completion of the course, student should be able to-

CO No	Course Outcomes (COs)	Bloom's Cognitive level
CO 1	Find the various procedures and techniques for the experiments related to topics in 23ScPhyU3102.	1
CO 2	Generalize the mathematical concepts/equations to obtain quantitative results.	2
CO 3	Integrate the basic communication skills through working in groups in performing the laboratory experiments and by interpreting the result.	3
CO 4	Correlate the technical and evaluative skills using laboratory equipment, tools, and materials.	4

CO 5	Test practical knowledge by applying the experimental methods to correlate with the Physics theory.	5
CO 6	Adapt the knowledge of mechanical, electrical and optical systems for various measurements.	6

Unit 1		
	1. Verification of Kirchhoff's Current	
	Law	
	2. Verification of Kirchhoff's Voltage	
	Law	
	3. Vector diagrams of L - R circuit	
	4. Charging and discharging of	
	Capacitor.	
	Self-inductance using Maxwell's Bridge.	
	6. Wheatstone's Bridge	
	7. Study of B-H curve	
	8. Study of Solenoid	
	•	
	Equivalent resistance in series and parallel	
	Equivalent capacitance in series and parallel	
	11. Dielectric constant	
	12. u1/u2 by Suspension Method	
	13. Activity, Study Tour Report	
	14. Assignments, Demonstration	
	15. Virtual Lab etc.	

- 1. An Advanced course in Practical Physics, D. Chattopadhyay and P. C. Rakshit

- B. Sc. Practical Physics, C.L.Arora
 B. Sc. Practical Physics, Harnam Singh
 University Physics with Modern Physics, Sears and Zemansky
- 5. Fundamental of Physics, Halliday and Resnick
- 6. Fundamental of Optics, Francis Jenkins, Harvey White

Modern College of Arts, Science and Commerce,

Shivajinagar, Pune - 5

First Year of B.Sc. (2023 Course under NEP 2020)

Course Code: 23ScPhyU2301 Course Name: Physics Minor Lab I

Teaching Scheme: 4 Hours/Week Credit: 02

Examination Scheme: CIA: 20 Marks End-Sem: 30 Marks

Prerequisite Courses:

• Familiarity with courses in first year B.Sc.

• Familiarity with topics learned in 23ScPhyU3102

Course Objectives:

- To gain practical knowledge by applying the experimental methods to correlate with the Physics theory.
- To learn the usage of optical systems for various measurements.
- Apply the analytical techniques and graphical analysis to the experimental data.
- To develop intellectual communication skills and discuss the basic principles of scientific concepts in a group.

Course Outcomes:

On completion of the course, student should be able to-

CO No	Course Outcomes (COs)	Bloom's Cognitive level
CO 1	Find the various procedures and techniques for the experiments related to topics in 23ScPhyU3102.	1
CO 2	Generalize the mathematical concepts/equations to obtain quantitative results.	2
CO 3	Integrate the basic communication skills through working in groups in performing the laboratory experiments and by interpreting the result.	3
CO 4	Correlate the technical and evaluative skills using laboratory equipment, tools, and materials.	4

CO 5	Test practical knowledge by applying the experimental methods to correlate with the Physics theory.	5
CO 6	Adapt the knowledge of mechanical, electrical and optical systems for various measurements.	6

Unit 1		
	 Units and Dimensions in physics experiments. Measurements and Error analysis in Physics Measurements using Vernier caliper. Measurements using Micrometer screw gauge. Measurements using Travelling Microscope. Measurements using Spectrometer. Study of Digital Multimeter Study of Signal Generator Study of Signal Generator Study of Voltmeter. Study of Ammeter. Study of Bread Board Activity, Study Tour Report Assignments, Demonstration, Virtual Lab etc. 	

- 1. An Advanced course in Practical Physics, D. Chattopadhyay and P. C. Rakshit

- All Advanced Course in Fractical Physics, D. Chattopadnyay and
 B. Sc. Practical Physics, C.L.Arora
 B. Sc. Practical Physics, Harnam Singh
 University Physics with Modern Physics, Sears and Zemansky
 Fundamental of Physics, Halliday and Resnick
 Fundamental of Optics, Francis Jenkins, Harvey White

Modern College of Arts, Science and Commerce,

Shivajinagar, Pune - 5

First Year of B.Sc. (2023 Course under NEP 2020)

Course Code: 23ScPhyU2401 Course Name: Conventional and

Non-conventional energy sources

Teaching Scheme: 2 Hours/Week Credit: 02

Examination Scheme: CIA: 20 Marks End-Sem: 30 Marks

Course Prerequisites:

· Familiarization of basic knowledge of Non-conventional Energy Sources

Course Objectives:

1. To create awareness among the students about the different types of non-conventional energy resources and emphasize its importance

2. Apply the concept and use of knowledge of the renewable energy sources course to real-life problems.

Course Outcomes:

CO No	Course Outcomes (COs)	Bloom's Cognitive level
CO 1	Evaluation of the environmental effects of energy production and the relationship between energy generation and environment will be achieved	1
CO 2	Various types of environmental pollution and their effects will be explained	2
CO 3	Identify the basic principles of electricity generation from wind energy systems and photovoltaic systems.	3
CO 4	Differentiate between generation of electricity from fossil fuels and renewable resources	4
CO 5	Review the present energy scenario and the need for energy storage	5

CO 6	Solve problems related to wind energy systems and	6
	PV systems.	

Unit 1		15
	Classification of Energy Sources,	
	Primary Energy Sources, Secondary	
	Energy Sources, Statistical Review of	
	Primary Energy Sources, Energy	
	Consumption Pattern in India, Impact	
	of Excessive Use of Fossil Fuels on	
	Environment	
Unit 2		15
	Features of	
	Non-Conventional/Renewable Energy	
	Sources, Statistical Review of	
	Renewable Energy Sources, Benefits	
	of Energy Conservation to a Nation,	
	Energy Audit, Energy Management,	
	Energy Strategy, Green energy, Clean	
	energy, Green footprint, Carbon	
	footprint etc.	

- 1. Sukhatme S P, Solar Energy: principles of Thermal Collection and Storage, TataMcGrawHill.
- 2. Duffie J A, Beckman W A, Solar Engineering of Thermal Processes, Johnn Wiley.
- 3. Goswami D Y, Frank Kreith and Kreider J F, Principles of Solar Engineering, Taylor and Francis, USA.
- 4. Garg H P, Prakash S, Solar Energy: Fundamental and Application, Tata McGrowHill, New Delhi.
- 5. Kreith F, Kreider J F, Principles of Solar Engineering, McGrawHill.
- 6. Kreider J F, Kreith F, Solar Energy Handbook, McGrawHill.
- 7. Bent Sorensen, Renewable Energy, Academic press, New York.
- 8. Tiwari, G N, Solar Energy, Fundamentals Design, Modeling and Applications, Narosa, New Delhi

Modern College of Arts, Science and Commerce, Shivajinagar, Pune - 5

First Year of B.Sc. (2023 Course under NEP 2020)

Course Code: 23ScPhyU2501 Course Name: Energy Studies II

Teaching Scheme: 4 Hours/Week Credit: 02

Examination Scheme: CIA: 20 Marks End-Sem: 30 Marks

Prerequisite Courses:

• Familiarity with Renewable and Non-Renewable Energy Sources

Course Objectives:

- To study the basic concepts regarding fundamentals of renewable energy
- To impart knowledge about importance of renewable energy and its practical applications

Course Outcomes:

On completion of the course, student should be able to-

CO No	Course Outcomes (COs)	Bloom's Cognitive level
CO 1	Operational experience on solar cooker	1
CO 2	Measurement of I-V characteristic of Mono-Crystalline and Poly-Crystalline PV module	2
CO 3	Measurement of illumination using Lux meter	3
CO 4	Learn the functioning of box-type solar cooker, hybrid solar cooker	4

CO 5	Covers the modern knowledge and on-field practices of solar PV systems.	5
CO 6	Characterize the biomass qualitatively and quantitatively	6

Unit 1		15
Ont 1	 Determination of Calorific value of Wood Determination of Calorific value of Cow dung Determination of heat Loss Coefficient in Flat Plate Collector. 	13
	4. Performance Evaluation of Box Type Solar Cooker5. Performance Evaluation of Concentrating Type Solar Cooker	
	6. Solar radiation measurements by Sun meter7. Determine efficiency of solar still	
	8. Inverter Bulb 9. Solar chimney	
	10. Study of Energy Storage Systems 11. Biomass energy 12. Study of Biogas plant	
	13. Estimation of Solar constant14. Charging and discharing of Electric	
	Vehicle Battery 15. Visit to solar energy farm (Solar PV plant/Wind energy/ Thermal energy/ Hydroelectric Co generation plant).	

- 1. Sukhatme S P, Solar Energy: principles of Thermal Collection and Storage, TataMcGrawHill.
- 2. Duffie J A, Beckman W A, Solar Engineering of Thermal Processes, Johnn Wiley.
- 3. Goswami D Y, Frank Kreith and Kreider J F, Principles of Solar Engineering, Taylor and Francis, USA.
- 4. Garg H P, Prakash S, Solar Energy: Fundamental and Application, Tata McGrowHill, New Delhi.
- 5. Kreith F, Kreider J F, Principles of Solar Engineering, McGrawHill.
- 6. Kreider J F, Kreith F, Solar Energy Handbook, McGrawHill.

- 7. Bent Sorensen, Renewable Energy, Academic press, New York.
- 8. Tiwari, G N, Solar Energy, Fundamentals Design, Modeling and Applications, Narosa, New Delhi

Modern College of Arts, Science and Commerce,

Shivajinagar, Pune - 5

First Year of B.Sc. (2023 Course under NEP 2020)

Course Code: 23ScPhyU2601 Course Name: Computational Physics Skills I

Teaching Scheme: 4 Hours/Week Credit: 02

Examination Scheme: CIA: 20 Marks End-Sem: 30 Marks

Course Prerequisites:

• Completed first year course 23ScPhyU1101

Course Objectives:

- To understand basic programming in Python using Numpy and Matplotlib
- To get familiar with Jupyter notebook, Colab
- To understand solving simple problems using Python programming

Course Outcomes:

	Course Outcomes (COs)	Bloom's Cognitive level
CO 1	Explain various problems using algorithm	1
CO 2	Compare Jupyter Notebook Vs Colab	2
CO 3	Apply programming techniques to solve simple physics problems	3
CO 4	Analyze the errors in Python program	4
CO 5	Determine algorithm to solve simple physics problems using Numpy and Matplotlib for plotting	5
CO 6	Solve a given problem based on Mechanics using Python program	6

Course Content

Unit 1		15
	1. Introduction to Python script files	
	2. Introduction to Jupiter Notebook	
	3. Plotting one dimensional functions using Matplotlib	
	4. Displacement and velocity in motion with constant acceleration	
	5. Projectile Motion	
	Charging and Discharging of Capacitor	
	7. Motion of charged particle in external magnetic field	
	8. Ohm's law	
	Calculate Moment of Inertia of non-uniform disc	

10. Random numbers gener	ation using
python	
11. Plotting probability dens	sity function
of random numbers genera	ated using
various methods	
12. Plotting two dimensiona	al functions
using Matplotlib	
13. Writing data files in Pyt	hon
14. Study Tour Report	
15. Assignments, Demonstr	ration etc.

- 1. Scientific Computation in Python (2nd Edition), Abhikit Kar Gupta, Techno World Publication
- 2. Computational Physics: Problem Solving with Python, 4th Edition, Rubin H. Landau, Manuel J. Páez, Cristian C. Bordeianu, Wiley-VCH
- 3. Introduction to Methods of Numerical Analysis, (5th Edition), S. S. Sastry, Prentice Hall India
- 4. http://www.python.org
- 5. https://numpy.org/

Modern College of Arts, Science and Commerce,

Shivajinagar, Pune - 5

First Year of B.Sc. (2023 Course under NEP 2020)

Course Code: 23ScPhyU1901 Course Name: Astronomy in India

Teaching Scheme: 2 Hours/Week Credit: 02

Examination Scheme: CIA: 20 Marks End-Sem: 30 Marks

Prerequisite Courses:

• Familiarity with 10+2 level physics syllabus

Course Objectives:

- To understand fundamental concepts of astronomy, including the structure of the Sun, Solar System, stars, galaxies, and cosmology.
- To study the principles of space and astrophysics, including general relativity and gravitation.
- To explore astronomical observatories and research facilities in India and their contributions to astrophysics.
- To analyze the role of observational and theoretical astronomy in understanding celestial phenomena.
- To develop problem-solving skills in astrophysical applications using mathematical and computational approaches.

Course Outcomes:

CO No.	Course Outcomes (COs)	Bloom's Cognitive Level
CO1	Recall fundamental concepts of astronomy, including the Sun, Solar System, stars, galaxies, and cosmology.	1
CO2	Explain key principles of space physics, general relativity, and gravitation. Interpret their significance in astrophysical phenomena.	2
CO3	Apply theoretical frameworks to analyze planetary motion, stellar evolution, and galaxy dynamics	3
CO4	Analyze observational techniques used in Indian astronomical facilities and evaluate their contributions to astrophysical research.	4
CO5	Evaluate the role of radio, optical, and space-based observatories in advancing modern astronomy. Assess their impact on astrophysical discoveries.	5

CO6	Interpret astronomical data to understand celestial events and	6
	phenomena. Assess their significance in astrophysical contexts.	

Unit 1	Chapter 1 Preliminaries	15
	1. The Sun	
	2. Solar System Studies	
	3. Stars and Galaxies	
	4. Galaxies and Cosmology	
	5. Space and Astrophysics	
	6. General Relativity and Gravitation	
Unit 2	Astronomical Facilities in India	15
	1. Vainu Bappu Observatories	
	2. Rangapur Observatory	
	3. Naital Observatory	
	4. Gurushikhar IR Observatory	
	5. Kodaikanal Observatory	
	6. Udaipur Solar Observatory	
	7. Radio Astronomy: NCRA, Raman	
	Research Instritute, Bengaluru	
	8. PRL, Ahamdabad.	

- 1) An Introduction to Astrophysics Baidyanath Basu, Tanuka Chattopadhyay
- 2) Astronomy in India- Rajesh khochar and Jayanti Narlikar
- 3) Astrophysics and Cosmology- Roger Blandford, David Gross.
- 4) Astronomy and Astrophysics Mohit Kumar Sharma