Course Code: 24CsDscU1105

Course Name: Computational Mathematics

Teaching Scheme: TH: 2 Hours/Week Credit: 02

Examination Scheme: CIA: 20 Marks End-Sem: 30 Marks

Prerequisites: Vectors, Functions, Polynomials, Matrices, Determinant.

Course Objectives: To study

Determinants

- System of linear equations
- Linear transformations
- Eigenvalues and Eigenvectors.

Course Outcomes: On completion of the course, student will be able to:-

- Find the determinant of a given matrix
- Find echelon form a matrix
- Solve system of linear equations
- To check whether given transformation is linear or not
- Find a matrix of general linear transformation.
- Verify Rank-Nullity theorem
- Find eigenvalues and eigenvectors of a square matrix.
- Check whether given matrix is diagonalizable or not
- Represent the quadratic form in the form of a matrix and vice versa.
- Apply concepts learnt in this course to solve some real world problems arising out as an application of linear algebra.

Chapter 1	Determinants	04 hours
	 Determinants by Cofactor Expansion Evaluating Determinants by Row Reduction Properties of the Determinant Function 	

Chapter 2	System of linear equations	10 hours
	 Introduction to System of Linear Equations Row reduction and echelon form of a matrix LU Decomposition of a Matrix Gauss elimination method Gauss –Jordan elimination method 	
chapter 3	Linear Transformations	10 hours
	 Euclidean n-Space General Linear Transformations. Kernel and Range Rank Nullity Theorem Matrix of general Linear Transformations. 	
Chapter 4	Eigenvalues and Eigenvectors	06 hours
	Eigenvalues and Eigenvectors.Diagonalization.	
	Total No. of Hours	30

- 1) Elementary Linear Algebra (Applications Version) by Howard Anton, Chriss Rorres, John Wiley and Sons Inc.(Ninth edition), 2010.
- 2) Linear Algebra and Its Applications by David Lay, Steven Lay and Judi McDonald, Pearson, Fifth edition.
- 3) Introduction to Linear Algebra, S. Lang, Springer-Verlag (Second edition), 1986.
- 4) Linear Algebra by K. Hoffmann and R. Kunze, Prentice Hall of India (Second edition), 1998.

Course Code: 24CsDscU1106

Course Name: Lab Course on Computational Mathematics
Teaching Scheme: PR: 4 Hours/Week Credit: 02

Examination Scheme: CIA: 20 Marks End-Sem: 30 Marks

Prerequisites: Vectors, Functions, Polynomials, Matrices, Determinant.

Prerequisites: Vectors, Functions, Polynomials, Matrices, Determinant.

Course Objectives: To study

Determinants

- System of linear equations
- Linear transformations
- Eigenvalues and Eigenvectors.

Course Outcomes: On completion of the course, student will be able to:-

- Find the determinant of a given matrix
- Find echelon form a matrix
- Solve system of linear equations
- To check whether given transformation is linear or not
- Find a matrix of general linear transformation.
- Verify Rank-Nullity theorem
- Find eigenvalues and eigenvectors of a square matrix.
- Check whether given matrix is diagonalizable or not
- Represent the quadratic form in the form of a matrix and vice versa.
- Apply concepts learnt in this course to solve some real world problems arising out as an application of linear algebra.

	List of Practicals	60 Hours
Practical 1	Determinants	
Practical 2	Matrices using Scilab	
Practical 3	Echelon form and LU decomposition of a Matrix	
Practical 4	System of linear equation	

Practical 5	System of linear equations using Scilab
Practical 6	Polynomials using Scilab
Practical 7	Graphs of functions using Scilab/Geogebra
Practical 8	Eigenvalues and Eigenvectors
Practical 9	Eigenvalues and Eigenvectors using Scilab
Practical 10	Linear transformation
Practical 11	Rank-Nullity Theorem
Practical 12	Applications of Linear Algebra
Practical 13	Two dimensional transformations using Python
Practical 14	Three dimensional transformations using Python
Practical 15	Projections using Python

Note: For every batch there will be 4 hours for each practical session per week.

- 1) Elementary Linear Algebra (Applications Version) by Howard Anton, Chriss Rorres, John Wiley and Sons Inc.(Ninth edition), 2010.
- 2) Linear Algebra and Its Applications by David Lay, Steven Lay and Judi McDonald, Pearson, Fifth edition.
- 3) Introduction to Linear Algebra, S. Lang, Springer-Verlag (Second edition), 1986.
- 4) Linear Algebra by K. Hoffmann and R. Kunze, Prentice Hall of India (Second edition), 1998.

Course Code: 24CsDscU2105 Course Name: Graph Theory

Teaching Scheme: TH: 2 Hours/Week Credit: 02

Examination Scheme: CIA: 20 Marks End-Sem: 30 Marks

Prerequisite: Set Theory

Course Objectives: To StudyGraphs, types of graphs.

- Operations on graphs viz. Union, Intersection, Ring Sum and Product.
- Connected graphs and its properties.

• Trees and their properties.

Course Outcomes: On completion of the course, student will be able to:-

- Convert real life problems into graph theoretical models.
- Check whether two graphs are isomorphic or not.
- Apply basic operations on graphs and connected graphs.
- Find the shortest path for a given graph.
- Apply Tree Traversal algorithms for a given tree
- Find the shortest spanning tree for a given graph.

Chapter 1	Graphs	4 Hours
	 Graphs as Models. Types of graphs. Isomorphism. Adjacency and Incidence Matrix of a Graph. 	
Chapter 2	Operations on Graphs	6 Hours
	 Subgraphs, Induced subgraphs. Vertex deletion, Edge deletion. Complement of a graph. Union and Intersection. 	

	Ring Sum and Product of graphs.Fusion of vertices.	
Chapter 3	Connected Graphs.	10 Hours
	 Walk, Trail, Path and Cycle. Connected Graphs. Distance between two vertices, eccentricity, center, radius and diameter of a graph. Isthmus and Cutvetex. Cutset, edge-connectivity, vertex connectivity. Weighted Graphs. 	
Chapter 4	Dijkstra's Algorithm. Trees	10 Hours
Chaptel 4	 Trees. Center of a tree. Binary Tree. Tree Traversals. Spanning Tree. Kruskal's Algorithm. 	To Hours
	Total No. of Lectures	30

- 1) A First Look at Graph Theory by John Clark and Derek Holton, Allied Publishers (1st Indian edition), 1995.
- 2) Graph Theory with Applications to Computer Science and Engineering by Narsingh Deo, Prentice Hall of India (3rd Indian edition), 1986.

Course Code: 24CsDscU2106

Course Name: Lab Course on Graph Theory

Teaching Scheme: PR: 4 Hours/Week Credit: 02

Examination Scheme: CIA: 20 Marks End-Semester: 30 Marks

Prerequisite: Set Theory

Course Objectives: To Study

• Graphs, types of graphs.

• Operations on graphs viz. Union, Intersection, Ring Sum and Product.

• Connected graphs and its properties.

• Trees and their properties.

Course Outcomes: On completion of the course, student will be able to:-

- Convert real life problems into graph theoretical models.
- Check whether two graphs are isomorphic or not.
- Apply basic operations on graphs and connected graphs.
- Find the shortest path for a given graph.
- Apply Tree Traversal algorithms for a given tree
- Find the shortest spanning tree for a given graph.

	List of Practicals	60 Hours
Practical 1	Graphs.	
Practical 2	Matrix of a Graph.	
Practical 3	Operations on Graphs.	
Practical 4	Isomorphism of Graphs.	
Practical 5	Eccentricity, center, radius and diameter of a graph.	
Practical 6	Dijkastra's Algorithm.	

Practical 7	Connectivity.	
Practical 8	Chinese Postman Problem.	
Practical 9	Travelling Salesman Problem.	
Practical 10	Trees	
Practical 11	Fundamental Circuits and cutsets	
Practical 12	Tree Traversal algorithms	
Practical 13	Binary tree	
Practical 14	Kruskal's and Prim's algorithms	
Practical 15	Directed Graphs	

- 1) A First Look at Graph Theory by John Clark and Derek Holton, Allied Publishers (1st Indian edition), 1995.
- 2) Graph Theory with Applications to Computer Science and Engineering by Narsingh Deo, Prentice Hall of India (3rd Indian edition), 1986.