MCASC, Pune 5: NEP 2024

Level: - 4.5 (First Year) Sem:I

Course	Course Code	Course Title	Cred	dits	Teac	hing	Eva	luation	
Type					Sche	me	Scho	eme and	d
					Hr/V	Veek	Max	k Marks	S
			TH	PR	TH	PR	CE	ESE	Total
Subject 1	24ScBioU1101	Plant Science	2		2		20	30	50
T(2)+(T/P) (2)orT(4)	24ScBioU1102	Lab Course on 1101		2		4	20	30	50
Subject 2	24ScBioU1201	Chemistry	2		2		20	30	50
T(2)+(T/P) (2)orT(4)	24ScBioU1202	Lab Course on 1201		2		4	20	30	50
Subject 3	24ScBioU1301	Biochemistry	2		2		20	30	50
T(2)+(T/P) (2)orT(4)	24ScBioU1302	Lab Course on 1301		2		4	20	30	50
IKST(2)	24CpCopU1901	Generic IKS	2		2		20	30	50
GE/OE (T/P) (2)	24ScBioU1401	Biotechnology and Human welfare I	2		2		20	30	50
SEC (P)(2)	24ScBioU1601	Modern Physics		2		2	20	30	50
AECT(2)	24CpCopU1701/ 24CpCopU1702	MIL-I(Hindi)/MIL-I(Marathi)	2		2		20	30	50
VECT(2)	24CpCopU1801	Environmental Science	2		2		20	30	50
Total			14	08	14	16			550

Level:- 4.5 (First Year) Sem: II

Course	Course Code	Course Title	Cred	dits	Teac	hing	Eva	luation	
Type					Sche	me	Sch	eme and	d
					Hr/V	Veek	Max	k Mark	8
			TH	PR	TH	PR	CE	ESE	Total
Subject 1	24ScBioU2101	Animal Sciences	2		2		20	30	50
T(2)+T/P(2) orT(4)	24ScBioU2102	Lab Course on Animal Sciences		2		4	20	30	50
Subject 2	24ScBioU2201	Microbiology	2		2		20	30	50
T(2)+P(2)	24ScBioU2202	Lab Course on Microbiology		2		4	20	30	50
Subject 3	24ScBioU2301	Biophysics and Instrumentation	2		2		20	30	50
T(2)+P(2)	24ScBioU2302	Lab Course on Biophysics and Instrumentation		2		4	20	30	50
GE/OE (T/P)(2)	24ScBioU2401	Biotechnology and Human welfare II	2		2		20	30	50
SECT(2)	24ScBioU2601	Basics of Mathematics and Statistics	2		2		20	30	50
AECT(2)	24CpCopU2703	English Communication Skills I	2		2		20	30	50
VECT(2)	24CpCopU2801	Democracy, Election and Governance	2		2		20	30	50
CC(2)	24CpCopU2001/	Physical Education/	2		2		20	30	50

	24CpCopU2011/ 24CpCopU2021/ 24CpCopU2031/ 24CpCopU2041/ 24CpCopU2051/ 24CpCopU2061/ 24CpCopU2071	Arts / Performing Arts					
Total			14	08	14	16	550

Progressive Education Society's

Modern College of Arts, Science and Commerce,
Shivajinagar, Pune - 5

First Year of B.Sc. Biotechnology
(2024 Course Under NEP 2020)

Semester I

Course Code: 24ScBIOU1101 Course Name: Plant Science

Teaching Scheme: TH: 2 Hours/Week Credit: 2C (2T)
Examination Scheme: CIA: 20 Marks End-Sem: 30 Marks

Prerequisite:

• To know Basic botany in 11th and 12th Std.

Course Objectives:

• To Study morphology and anatomy different classes of plant group and also identification of plants on the basics of their morphology.

• To learn plant taxonomy and plant identification

Course Outcomes:

On completion of the course, students will be able to:

CO. No.	Course Outcomes (Cos)	Blooms Level	Cognitive
CO 1	How to understand plant groups and unique features of plants	1	
CO 2	Demonstrate and sketch the diagrams of different plant groups	2	
CO3	Identify various structure of morphological characters of plant species	3	
CO4	Distinguishing between various cellular structure	4	
CO5	Explain internal structure of Root ,Stem, and Leaf	5	
CO6	Discuss fundamental components of taxonomy	6	

Unit	Title	30 Lectures
Unit1	Plant as a life form:	2 lecture
	 Introduction to plant world and life form- 	
	General & Unique features of plants	
Unit2	Introduction to plant groups:	10 lecture
	• Algae,	
	• Fungi,	
	• Bryophytes,	
	• Pteridophytes,	
	• Gymnosperms,	
	Angiosperms with examples	
Unit3	Morphology and Anatomy of vegetative and	10 lecture
	reproductive plant organs:	
	• Leaf	
	• Shoot,	
	• Root	
	• Flower	
	• Inflorescence	
	• Fruit	
Unit4	Introduction to plant taxonomy and Plant Tissues:	8 lectures
	 Fundamental components of taxonomy identification, nomenclature, Classification Tissues – Meristematic and permanent tissues (simple and complex) 	

- 1, A textbook of Botany (Algae, Fungi, Virus, Microbiology, Plant pathology, Bryophytes, Pteridophytes and Gymnosperms) V. Singh, Pandey and Jain, Rastogi Publications, Shivaji Road, Meerut.
- 2., Botany for Degree Students, B.R Vashista, Sinha ,S. Chand and Company Ltd, Ramnagar, New Delhi.
- 3. College Botany Vol I.B.P. Pandey Chand and Company Ltd, Ram Nagar, New Delhi.
- 4. College Botany, Vol II,S.Sundarajan, Himalaya publishing House, New Delhi.
- 5. College Botany (For degree students), AC Datta, Manzar Khan Oxford University, Press Kolkatta.
- 6. College Botany Vol- I, Gangulee Das and Dutta, New central Book Agency, Kolkatta.
- 7. A.Text Book of Botany Vol II, Pandey and Ajanta Chaddha, Vikas Publication Pvt. Ltd, New Delhi

- 8. A Classbook of Botany, Dutta A.C., (Oxford University Press, UK)(2000)
- 9. Taxonomy of vascular plants (Scientific Publ,), Lawrence G.H. (2012)
- 10. Anatomy of seed plants (Wiley, USA), Esau K. (1977)
- 11. Plant anatomy: an applied approach (Blackwell Sci, USA), Cutler, Botha & Stevenson (2007)
- 12. College Botany Vol I, II and III (New Central Book Agency, Kolkata), Ganguli, Das Dutta (2011)
- 13. The Morphology of Gymnosperms (The Structure and Evolution of Primitive seed Plants), Sporne K.R. (1971), Hutchinson University Library, London.
- 14. Vascular Differentiation in Plants. Esau, K. (1965), Holt, Rinehart and Winston, N.Y., Chicago, San Francisco, Toronto, London.
- 15.: An Introduction to Plant anatomy, Eames, A.J., and Mc Daniels, L.H. (1979) Tata-McGraw Hill Publishing Co., (P) Ltd. Bombay, New Delhi.
- 16.Plant Anatomy, (2nd Edition) Esau. K. (1980), Wiley Eastern Ltd., New Delhi

Progressive Education Society's

Modern College of Arts, Science and Commerce,
Shivajinagar, Pune - 5

First Year of B.Sc. Biotechnology
(2024 Course Under NEP 2020)
Semester I

Course Code: 24ScBioU 1102 Course Name: Lab on 24ScBioU1101

Teaching Scheme: TH: 4 Hours/ Week Credit: 2C (15 P)
Examination Scheme: CIA: 20 Marks End-Sem: 30 Marks

Prerequisite:

• Basic knowledge of Plants.

Course Objectives:

- To Study Anatomy of Plants and family of Plants
- To study Plant morphology

		15 Practicals
Practical	Title	
Practical -1	To Study of characteristics features of the	3 Practical
	following:	

	 Algae Fungi Bryophytes Pteridophytes Gymnosperms Angiosperms 	
Practical -2	Anatomical Study of Plants:	6 Practical
	 Study the Anatomy of Monocot Root Dicot Root, Study the Anatomy of Monocot Stem Dicot Stem, Study the Anatomy of Monocot Leaf Dicot Leaf, Taking Transverse sections of Root,Stem and leaf with staining Media . 	
Practical- 3	Study of plant cell types:	1 Practical
	 Study of plant cell types using squash techniques and Maceration. 	
Practical -4	Studies of families:	3 Practical
	To study of Plant taxonomy of any Three family.	
Practical- 5	Study of Different Types of Inflorescences:	2 Practical

Progressive Education Society's

Modern College of Arts, Science and Commerce (Autonomous)

Shivajinagar, Pune - 5

First Year of B.Sc. Biotechnology

(2024 Course Under NEP 2020)

Semester I

Course Code: 24ScBioU1201 Course Name: Chemistry

Teaching Scheme: TH: 2 Hours/Week Credit: 2C (2T)
Examination Scheme: CIA: 20 Marks End-Sem: 30 Marks

Prerequisite: Basics of chemistry from std XI & XII science

Course Objectives:

- To Study Basics of chemistry
- Important reactions which will help various processes in biological system.
- To study importance of pHand buffer in chemical and biochemical reactions
- To understand chemical kinetics of chemical and biochemical reactions
- To expertize students in biochemical calculations

Course Outcomes:

On completion of the course, student will be able to-

Unit	Title	Lectures
Unit 1	Ionic equilibria	7 Lectures
	 pH, buffer, dissociation constant, pK values Solubility Product, indicators in titration. Equilibrium constant, Le Chatelier's principle, Acid and bases Strength of acid &bases, pH of aqueous solutions, Acid—base titrations, Titration curves, Solubility product & Applications Ionic product Condition for precipitation, Buffers, buffer action, Henderson equation & related problems Osmosis, law of osmotic pressure and its measurement, determination of molecular weight from osmotic pressure 	
Unit 2	Chemical kinetics	5 Lectures

	 Rates of reactions, order & molecularity, zero, first & second order reactions, Differential and integrated rate equation, half lifeperiods, Arrhenius equation, collision theory of reaction rate, 	
	temperaturedependent reaction rates	
Unit 3		5 Lectures
Omt 5	 Electrochemistry Electrochemical cell, half cell, reaction, reduction potential, electrochemical series, 	5 Lectures
	• Thermodynamic potential function from	
	cell potential measurement,	
	• Liquid junction potential, Huckel	
	theory, overvoltage/ overpotential	
Unit 4	Basics of mole concept	7Lectures
	 Mole concept, Determination of molecular weight by gram molecular volumerelationship, Problems based on mole concept, Solutions, colligative properties Methods of expressing concentrations, strength, Normality, Molarity and Molality, ppm, Standardization of solutions, pH, buffer systems, dissociation constant, pK value, Preparation of standard solution of acids and bases, Problems related to acid base titrations, volumetric experiments, acidim etry, alkalimetry 	
Unit 5	Chemical bonding & molecules	6 Lectures
	 Types of bond covalent, ionic, hydrogen bonding, inter and intra molecular hydrogen bonding Dipole- dipole, dipole-induced dipole interaction, Structure of water molecule, oxidation state. Hydrophobic & hydrophilic interaction Diatomic molecules, Valence bond theory, VSEPR theory, hybridization involving s, p,d orbitals (sp, sp², sp³, dsp², sp²d, sp³ d, sp³ d²) Homo and heteronuclear diatomic 	

- Stereochemistry: Conformation and mechanism by P.S.Kalsi
- Organic chemistry by Jonathan clayden, nick greeves and stuart warren
- University General Chemistry by C.N. Rao, 1st edition (2000), Macmillan Publishers, India,
- Principles of Physical Chemistry, S.H. Maron and C.F. Prutton, Collier, 4th edition (1965) Macmillan Ltd 3.
- The elements of Physical Chemistry, Atkins P, de Paula J. W. H. Freeman Publication, 5th edition (2009),USA
- An Introduction to Electrochemistry, Samuel Glasstone, BiblioBazaar, USA edition reprint, 2011,
- Physical Chemistry for biological sciences, Chang R , 1st edition, (2005), University Science Books, USA
- Physical Chemistry, David Ball, Thoson Learning, 1st edition, (2003), USA.
- Essentials of Physical Chemistry, B S Bahl, G D Tuli, ArunBahl, S. Chand Limited, 24th edition (2000) India.
- Concise Inorganic Chemistry, Author: J. D. Lee, John Wiley & Sons, USA, 5th edition (2008),
- Organic Chemistry, Morrison Robert Thornton, Pearson Publication, Dorling Kindersley (India Pvt. Ltd.), 6 th edition
- Guide book to Mechanism in Organic Chemistry by Peter Sykes, 6 th edition, (1996), Prentice Hall, India.

Progressive Education Society's Modern College of Arts, Science and Commerce (Autonomous) Shivajinagar, Pune - 5 First Year of B.Sc. Biotechnology (2024 Course under NEP 2020)

Semester I

Course Code: 24ScBioU1202 Course Name: Lab on 24ScBioU1201 Teaching Scheme: TH: 4 Hours/Week Credit 2C (15 P)

Examination Scheme: CIA: 20 Marks End-Sem: 30 Marks

Prerequisite: Basic chemistry from XI & XII Science.

Course Objectives:

- To Study Basics of chemistry and important reactions which will help various processes in biological system
- To study estimation methods of important biomolecules.

Practical	Title	Practical 15P
Practical-1	Preparation of solutions	1 Practical
Tractical 1	To prepare buffer solutions having	1 1 factical
	different concentrations	
Practical -2	Titrations	1 Practical
	a. To study Acid base titration based	
	by conductivity measurement.	
	b. To determine alkali content in	
	antacid tablet using HCl	
Practical -3	Chemical Kinetics	1 Practical
	To study kinetics of ester hydrolysis	
Practical -4	Thermochemistry	1 Practical
	To determine enthalpy and entropy	
	change of a reaction.	
	$2FeCl_3 + 3Mg \longrightarrow 2Fe + 3MgCl_2$	
Practical -5	Qualitative analysis	1 Practical
	To perform qualitative test for -	
	Hydrocarbons, alcohols, aldehyde,	
	ketones, aniline, amide	
Practical -6	Titration	1 Practical
	To determine content of acetic	
	acid in vinegar using NaOH	
Practical -7	Titration	1 Practical
	To determine normality/molarity	
	using acid base volumetric titration	
Practical -8	Stereochemistry	1 Practical
Fractical -0	To study different conformations	1 Fractical
	of biomolecules using models	
Practical- 9	Separation technique 1	1 Practical
	Recrystallization	
Practical -10	Separation technique 2	1 Practical
	Steam distillation	
Practical- 11	Separation technique 3	1 Practical
	Sublimation	
Practical- 12	TLC-1	1 Practical
	To understand basic principle of TLC	
Practical- 13	TLC-2	1 Practical

	To find Rf values of given samples A & B	
Practical- 14	Introduction to chemicals and glasswares	1 Practical
Practical- 15	Viscometery	1 Practical
	To determine viscosity of a given liquid by Ostwald's viscometer	

Progressive Education Society's Modern College of Arts, Science and Commerce (Autonomous)

Shivajinagar, Pune - 5 First Year of B.Sc.Biotechnology (NEP) (2024 Course under NEP 2020)

Course Code: 24ScBioU1301 Course Name: Biochemistry

Teaching Scheme: TH: 2 Hours/Week Credit: 2C (2T)

Examination Scheme: CIA: 20 Marks End-Sem: 30 Marks

Prerequisite: Basic chemistry from XI & XII Science.

Course Objectives:

- To Study Basics of biochemistry and important reactions which will help to understand various processes in biological system
- To study chemistry of biomolecules
- To understand structure and functions of biomolecules

Course Outcomes:

On completion of the course, student will be able to-

• Study all basic fundamentals of chemistry and biomolecules.

• Understand structure and functions of biomolecules.

Unit	Unit	30 lectures
Unit 1	Biological chemistry	2 lectures
	 Introduction to biochemistry 	
	 Historical perspective- cellular and 	
	chemical foundation	
	Genetic and evolutionary	
	foundations	
	• origin of life,	
77.1.0	Abiotic production of biomolecules	2.1
Unit 2	Water	3 lectures
	 Water as biological medium 	
	 Properties of water 	
	 Anomalous behaviour, weak interactions in water 	
	 interaction of biological molecules in water, Hydrogen bonding 	
	 ionization of water, osmosis, 	
	concept of pH	
	 titration of weak acids 	
	buffers	
	Biological buffers	
	Types of bond	
	Types of bolidCovalent and noncovalent	
	interactions in biomolecules with	
	suitable example	
	• functional groups and modification	
	of functional group relevant to	
	biomolecules.	
Unit 3	Basic Biomolecules	6 lectures
	Basic Biomolecules: Carbohydrates:	
	sugars and nonsugars	
	 classification of carbohydrates- 	
	mono, oligo, dextrins and	
	polysaccharide. Monosaccharides:	
	classifications of monosaccharide	
	based on functional group (ketoses	
	and aldoses) based on number of	
	carbon atoms	
	D and L configuration	
	• conformations	
	 mutarotation 	

		T
	 epimers anomers, chemical and physical properties; alpha, beta glycosidic linkage oligosaccharides reducing and non reducing sugars inversion of sugar polysaccharides- its classification based on function (1. Storage polysaccharide eg starch, glycogen and inulin 2.structural polysaccharides eg. cellulose, chitin) mucopolysaccharide functions of Carbohydrate 	
Unit 4	Lipids	3 lectures
	 Function of lipids, classification of lipids, Simple lipids- its structure and classes, fatty acids, saturation and unsaturation of fatty acids with examples, its significance, fatty indices, chemical and physical properties, complex lipids: Phospholipids, sphingo lipids, cerebrosides, gangliosides, prostaglandin cholesterol (good and bad) Steroids. 	
Unit 5	Proteins	5 lectures
	 Proteins: introduction, Polymer of amino acids, Classification of amino acids, essential amino acids, Configuration, properties, zwitterion, titration of amino acid, isoelectric point pI, properties of peptide bond, primary structure, reactions of oligopeptide with trypsin and chymotrypsin, secondary structure (alpha helix, beta pleated sheets, pitch value) Secondary repeats tertiary and quaternary structure with example. Denaturation and renaturation 	
Unit 6	Vitamins	3 Lectures

Unit 7	 fat soluble (A,D,E,K) and water soluble Vit. C, Thiamine, riboflavin, niacin, PIP, CoenzymeA, lipoic acid, Folic acid and B12 Enzymes Biocatalyst, Specificity, active site, Energy of activation, Lock and key, Induced fit hypothesis, prosthetic groups, cofactors, 	5 lectures
	coenzyme,holoenzyme,apoenzyme,	
	 IUB system of enzymes classification. 	
	 Enzyme inhibition, Basics of enzyme kinetics, 	
	 Parameters affecting enzyme activity (temp, pH, substrate, cofactor,enzyme con.) 	
Unit 8	Nucleic acids	3 Lectures
	 chemical names and structures of nitrogen bases, Nucleosides, nucleotides, Polynucleotide, DNA and RNA, Forces stabilizing nucleic acid structure, concept of reannealing of DNA 	

- Outlines of Biochemistry: 5th Edition, (2009), Erice Conn & Paul Stumpf; John Wiley and Sons, USA
- Fundamentals of Biochemistry. 3rd Edition, (2008), Donald Voet& Judith Voet , John Wiley and Sons, Inc. USA

- Principles of Biochemistry, 4th edition (1997), JefforyZubey, McGraw-Hill College, USA
- Biochemistry: 7th Edition, (2012), Jeremy Berg, LubertStryer, W.H.Freeman and company, NY
- Lehninger, Principles of Biochemistry. 5th Edition (2008), David Nelson & Michael Cox, W.H. Freeman and company, NY.
- Biochemistry. 5th Edition, (copu right 2013), Reginald Garett and Charles Grisham, Brook/Cole, Cengage Learning, Boston, USA.
- An Introduction to Practical Biochemistry.3rd Edition, (2001), David Plummer, Tata McGraw Hill Edu.Pvt.Ltd. New Delhi, India
- Biochemical Methods.1st, (1995), S.Sadashivam, A.Manickam, New Age International Publishers, India

Progressive Education Society's

Modern College of Arts, Science and Commerce (Autonomous)

Shivajinagar, Pune - 5 First Year of B.Sc.Biotechnology (NEP) (2024 Course under NEP 2020) Semester I

Course Code: 24ScBioU1302 Course Name: Lab on 24ScBioU1301

Teaching Scheme: TH: 4 Hours/Week Credit: 2C (15 P)

Examination Scheme: CIA: 20 Marks End-Sem: 30 Marks

Prerequisite: Basic chemistry from XI & XII Science.

Course Objectives:

- To Study Basics of chemistry and important reactions which will help various processes in biological system
- To study estimation methods of important biomolecules.

Practical	Title	15 practicals
Practical -1	Biological Buffers	1 Practical
	Preparation of solutions and buffers.	
Practical -2	Estimations	2 Practical
Practical -2	Estimations a. To estimate concentration of lipids in	2 Practical
Practical -2		2 Practical
Practical -2	a. To estimate concentration of lipids in	2 Practical

	method.	
Practical- 3	Saponification number	1 Practical
	 To find out saponification number of given lipid 	
Practical -4	Qualitative test for sugar	2 Practical
	 To perform Spot tests for sugar and cholesterol 	
Practical- 5	Isoelectric point	2 Practical
	 To find out isoelectric point p^Iof amino acid glycine. 	
Practical-6	Estimations	2 Practical
Practical-6	 Estimation of concentration of protein by Biuret method Estimation of concentration of protein 	2 Practical
Practical-6 Practical-7	Estimation of concentration of protein by Biuret method	2 Practical 1 Practical
	 Estimation of concentration of protein by Biuret method Estimation of concentration of protein by Lowery's method 	
	Estimation of concentration of protein by Biuret method Estimation of concentration of protein by Lowery's method Melting temperature of nucleic acid To determine T _m of DNA Thin layer chromatography	
Practical-7	 Estimation of concentration of protein by Biuret method Estimation of concentration of protein by Lowery's method Melting temperature of nucleic acid To determine T_m of DNA 	1 Practical
Practical-7	 Estimation of concentration of protein by Biuret method Estimation of concentration of protein by Lowery's method Melting temperature of nucleic acid To determine T_m of DNA Thin layer chromatography To separate amino acids by thin layer 	1 Practical

Progressive Education Society's

Modern College of Arts, Science and Commerce (Autonomous)

Shivajinagar, Pune - 5

First Year of B.Sc.Biotechnology (NEP) (2024 Course under NEP 2020)

Semester I

Course Code: 24ScBIOU1401 Course Name: Biotechnology and Human welfare I

Teaching Scheme: TH: 2 Hours/Week Credit: 2C (2T)

Examination Scheme: CIA: 20 Marks End-Sem: 30 Marks

Prerequisite:

• Basics of Science till 10th Standard.

Course Objectives:

CO Number	Course Outcomes	Bloom's Cognitive level
CO 1	Understand applications of Biotechnology in detergent and food industry.	1
CO 2	Environmental and medical applications of biotechnology.	2
CO 3	Different applications of nanotechnology and biopolymer production.	3
CO 4	Alcohol and antibiotic fermentation techniques	4
CO 5	Introduction to biofertilizers, GM crops, plant tissue culture techniques	5
CO 6	Introduction to livestock improvement methods	6

• To popularize Biotechnology among non-science students.

Course Outcomes:

After learning the course, students will be able to –

Unit	Title	30 Lectures
Unit 1	Industrial Biotechnology: Protein	8 L
	Engineering: Introduction, Protein	
	engineering applications	
	 In Food Industry (Amylases, Lipases, Proteases) In Detergent Industry (Bacterial alkaline proteases, Lipases, Proteases) Environmental Applications (environmental biosensors, bioremediation and biotransformation, petroleum biorefining, bioplastics) Medical Applications (recombinant protein production, immunotherapy, gene therapy, antibody engineering) Biopolymer production (elastin-like polypeptides, silk-like polymers) Nanotechnology applications (synthesis of biocompatible nanomaterials like nanowire construction, nanodevices, transducers) 	
Unit 2	Alcohol and antibiotic fermentation	7 L
	 Alcohol fermentation:Introduction, Basics ofAlcohol fermentation. Wine, beer, rice wine production. Antibiotic fermentation: Introduction, Antibiotic fermentation inPenicillin, Streptomycin, Tertracyclin. 	
Unit 3	Agricultural Biotechnology	10L
	 Introduction to N₂ fixation N₂ fixationand biofertilizers (<i>Rhizobium</i>, <i>Azotobacter</i>, <i>Anabaena</i>, <i>Azolla</i>, <i>Mycorrhiza</i>e). Pest resistant plants and insect resistant plants by gene transfer method. Bio-pesticides and bio-insecticides: Tricocards. Characterizations of genetic resources 	

	suitable example(Micropropagation and plant tissue culture techniques).GM crops with suitable example.	
Unit 4	Qualitative improvement of livestock: Introduction to livestock improvement	5L
	methods	
	a. Artificial insemination	
	b. Embryo transfer	
	c. Somatic cell nuclear transfer	
	d. Marker assisted breeding.	

- 1. Principles of Immunology and Immunodiagnostics, Ralph Michael Aloisi. Lippincott Williams and Wilkins
- 2. Immunology and Immuno-biotechnologyAshim K Chakravarty, Oxford University Press, 2006
- 3.Molecular Cell Biology, (6th edition) Harvey Lodish, Arnold Berk, Paul Matsudaira, Chris A. Kaiser, Monty Krieger, Matthew P. Scott, Lawrence Zipursky, and James Darnell. WH Freeman Publications
- 4. Letovsky, S.I. 1999 Bioinformatics. Kluwer Academic Publishers. 3. Baldi, P. and Brunak, S. 2001 5. Bioinformatics: The machine learning approach, The MIT Press.
- 6. Mount, D.W., Bioinformatics: 2001, Sequence and Genome Analysis. CSHL Press.
- 7. Glick, B. R., Pasternak, J. J., & Patten, C. L. (2010). Molecular biotechnology: principles and applications of recombinant DNA. Washington, DC: ASM Press.
- 8. Tramontano, A. (2006). Protein structure prediction: concepts and applications. In Protein Structure Prediction: concepts and applications.
- 9. Primrose, S. B., &Twyman, R. (2013). Principles of gene manipulation and genomics. John Wiley & Sons
- 10. Mathuriya A. S. Industrial Biotechnology (2009) Ane Books Pvt. Ltd.
- 11. New Products and New Areas of Bioprocess Engineering (Advances in Biochemical Engineering/Biotechnology, 68) by T. Scheper. Publisher: Springer Verlag.
- 12. Prescott's Microbiology, Joanne M. Willey , Linda M. Sherwood , Christopher J. Woolverton 8th Edition McGraw-Hill Publishers Eight edition- 2010.

Progressive Education Society's

Modern College of Arts, Science and Commerce,
Shivajinagar, Pune - 5

First Year of B.Sc. Biotechnology (2024 course under NEP 2020)

Course Code: 24ScBioU1601 Course Name: Modern Physics

Teaching Scheme: PR: 4 Hours/Week Credit: 2C (2P)

Prerequisite Courses: Knowledge of Basic physics and language Programming

Course Objectives:

• Students will be given the concept of C-programing language and basic physics

Practical	Title	15 Practicals
Practical-1	Use of Computer- Trigonometric Functions	1 practical
Practical-2	Use of Computer- Geometrical Functions	1 practical
Practical-3	Write a C program to compare two peptides and determines the type of the peptide. i.e small or poly based on the values inputted peptides. Amino acid range for small peptide is $< 1 - 8>$ whereas it is $< 9 - 50>$ for a poly peptide	1 practical
Practical-4	Write a c program to identify the glucose level in a blood The glucose level is identified by 180 diabetics. Write a C program to find the anemic level Anemic level is identified by the hemoglobin value. If the hemoglobin level is $9.6-13$, mild; $8-9.5$, moderate; <8 severe; >13 and $<=17$ Normal	1 practical
Practical-5	Write a C program to determine the type of DNA depending on the base number.	1 practical
Practical -6	Write a C program to find the number of purines and pyrimidines	1 practical
Practical-7	Convert Fahrenheit to Celsius Write a C program to find the Body Mass Index (BMI) of a person [BMI = weight in kgs / height in metres2]	1 practical
Practical-8	Write a C program to calculate the average base count	1 practical
Practical-9	 Write a C program to find the pH of a given solution for any given hydrogen ion concentration. [pH = - log[H]] Write a C program to find the pH value for a given [OH-] concentration [pH = 14.0 – pOH and pOH = - log10(pOH)] Write a C program to find the nature of any given solution The nature of any solution is decided by its pH value. If the pH value is greater than 0 and less than 7, then the solution is acidic. If pH value is 7, then it is neutral. If pH is more than 7 and less than 	1 practical

	equal to 14, then the solution is basic	
Practical-10	Measurements using various instruments (Vernier callipers,)	1 practical
Practical-11	Measurements using various instruments (Micrometer screw gauge)	1 practical
Practical-12	Frequency of A. C.	1 practical
Practical-13	Study of Digital Multimeter	1 practical
Practical-14	Study of Thermocouple	1 practical
Practical-15	Calculate g by using Simple Pendulum	1 practical

- 1. Advanced Practical Physics for Students by B. l.Worsnop And H. T. Flint.
- 2. Practical Physics by Dr. S. L. Gupta and Dr. V. Kumar, Pragati Prakashan.
- 3. Let Us C by Y. Kanitkar
- 4. C for Biologists by Ms. G. Jeyakodi

Progressive Education Society's

Modern College of Arts, Science and Commerce (Autonomous)

Shivajinagar, Pune - 5

First Year of B.Sc.Biotechnology (NEP)

(2024 Course under NEP 2020)

Semester II

Course Code: 24ScBIOU2101 Course Name: Animal Sciences

Teaching Scheme: TH: 2Hours/ Week Credit: 02 (2T)

Examination Scheme: CIA: 20 Marks End-Sem: 30 Marks

Prerequisite Courses:

• Basics of biology from 11th and 12thscience.

Course Objectives:

• To study animal classification, tissue types,respiratory pigments and oxygen dissociation curve, chemical communication through hormones in humans and economic applications of Zoology.

Course Outcomes:

On completion of the course, student will be able to—

Unit	Title	30 lectures
Unit 1	Animal Classification	5 lectures
	 Outline of classification of kingdom Animalia. Non-chordates (characteristic features and representative examples). Chordates (characteristic features and representative examples). 	
Unit 2	Animal Tissue types	7 lectures
	 Tissue types and subtypes with suitable examples. Epithelial tissue. Muscle tissue. Nervous tissue. Connective tissue. 	
Unit 3	Blood pigments and oxygen transport	4 lectures
	 Different types of respiratory pigments: hemoglobin, hemocyanin, erythrocruorin-chlorocruorin, hemerythrin. Oxygen dissociation curve and effect of temperature, pH, CO₂, organic phosphate compounds and altitude on it. 	
Unit 4	Hormones	4 lectures
	 Endocrine, Paracrine and Autocrine systems. Hormones released by Pituitary and Adrenal gland 	
Unit 5	Introduction to model organisms	2 lectures
	 What are model organisms, need and characteristics of model organisms Hydra Drosophila 	
Unit 6	Economic Zoology	8 lectures
	 Aquaculture Sericulture Vermiculture& Vermicomposting Apiculture 	

- 1. Chordate Zoology S. Chand & Company Ltd. Ram Nagar. New Delhi. Jordan, E.L. and Verma P.S. 1978.
- 2. Invertebrate Zoology. S. Chand & Company Ltd. Ram Nagar. New Delhi.
- 3. Modern Text Book of Zoology: Invertebrates.,R.L.Kotpal. Publisher, Rastogi Publications, 2012.
- 4. Animal Physiology adaptation and environment (fifth edition); Knut Schmidt-Nielsen,1997.
- 5. Introduction to general Zoology Vol 1; K. Chaki, G. Kundu, S. Sarkar.
- 6. Principles of Animal Physiology; Pearsonpublications; 2nd edition; C. Moyes& P. Schulte.
- 7. Economic Zoology, Shukla&Upadhyaya, 4th Edition., Rastogi Publications, 2009.
- 8. Modern Parasitology: A Textbook of Parasitology, 2nd edition, (1993) F. E. G. Cox, Wiley & Sons, USA.
- 9. Sericulture: www.csb.gov.in/publications/books by Central Silk Board, Ministry of Textiles Govt of India.
- 10. Microbiology–6th Edition (2006), Pelczar M.J., Chan E.C.S., Krieg N.R., The McGraw Hill Companies Inc. NY
- 11. General Microbiology Stanier R.Y., 5th edition, (1987) Macmillan Publication, UK.
- 12. Brock Biology of Microorganisms 9th ed. (2000), John M. Martinko, Jack Parker. Prentice hall, Upper Saddle River, New Jersey.
- 13. Presscott's Microbiology, 8th edition (2010), Joanne M Willey, Joanne Willey, Linda Sherwood, Linda M Sherwood, Christopher J Woolverton, Chris Woolverton, McGrawHil Science Engineering, USA.

Progressive Education Society's

Modern College of Arts, Science and Commerce (Autonomous), Shivajinagar,

Pune- 5

First Year of B.Sc. Biotechnology (2024 Course under NEP 2020)

Semester II

Course Code: 24ScBioU2102

Course Name: Lab Course on 24ScBioU2101

Teaching Scheme: PR: 4 Hours/ Week Credit: 02 (15P)
Examination Scheme: CIA: 20 Marks End-Sem: 30 Marks

Prerequisite Courses:

• Basics biology from 11th and 12thscience.

Course Objectives:

- To study in detail about *Paramecium*, Honeybee, *Hydra*, *Drosophila*, frog sense organs and circulatory and reproductive system, *Plasmodium* and *Fasciola* sps.
- Fasciola sps.
- Understand sense organs, circulatory and reproductive system of frog

Practical	Title	15 practicals
Practical -1	Study of Paramecium	2 practicals
	Morphology and sexual, asexual mode of reproduction in <i>Paramecium</i> .	
Practical2	Study of Honeybee	3 practicals
	Dissection and mounting of:	
Practical -3	Study of Hydra	2 practical
	• Morphology and sexual, asexual mode of reproduction in <i>Hydra sp</i> .	
Practical- 4	Study of Drosophila	2 practicals
	 Morphology Sexual dimorphism Lifecycle (temporary mounts of developmental stages: larva, pupa and adult stage) Eye and wing mutants 	
Practical -5	Study of frog	1 practical
	Sense organs.Circulatory systemReproductive system	
Practical -6	Study of Parasitology	2 practicals
	Morphology and lifecycle of: • Plasmodium sp. • Fasciola sp.	
Practical -7	Study of Earthworm	1Practical
Practical -8	Study of Amphioxus	1 Practical
Practical -9	Vital Staining	1 Practical
References		

1. A Manual of Practical Zoology- Invertebrates (2010), P.S. Verma , S. Chand Publishing.

2. A Manual of Practical Zoology- Chordates (2007), P.S. Verma, S. Chand Publishing.

Progressive Education Society's

Modern College of Arts, Science and Commerce (Autonomous), Shivajinagar,

Pune- 5

First Year of B.Sc. Biotechnology (2024 Course under NEP 2020)

Semester II

Course Code24ScBIOU2201

Course Name: Microbiology

Teaching Scheme: TH: 2Hours/ Week Credit: 02(2T)

Examination Scheme: CIA: 20 Marks End-Sem: 30 Marks

Prerequisite Courses:

• Basics of biology from 11th and 12th science.

Course Objectives:

• To study classification, replication and control of microorganisms.

Course Outcomes:

On completion of the course, student will be able to-

Unit	Title	30 Lectures
Unit 1	Introduction to Microbial World	2 lectures
	 Important developments leading to path breaking discoveries. 	
Unit 2	Classification of microorganisms	3 lectures
	 Five major groups of microorganisms: Bacteria, Fungi, Cyanobacteria, Archaea and viruses. 	
Unit 3	Prokaryotic Cell structure:	7 lectures
	• Function and ultra-structure of - cell wall (Gram positive and negative), cell membrane, flagella, etc.	

Unit 4	 Handling of microorganisms and biosafety measures Sterilization: Physical Agents and Chemical agents and their mode of action. Microbial disease control. 	4 lectures
Unit 5	Techniques in Microbiology	6 lectures
	 Cell Enumeration and quantification of growth. Total Count- Breeds count, direct microscopic count, hemocytometer, turbidity. Microscopy: Wet mount and dry mount. Staining techniques: Monochrome, Negative, Differential (Gram, Acid fast, blood staining). Structural features and special staining of Spore, flagella, cell wall, nucleic acid, capsule. 	
Unit 6	Microbial Growth	4 lectures
	 Growth curve, introduction to kinetics of growth, generation time, growth rate. Reproduction in microorganisms: Binary fission, asexual, sexual, Lytic, Lysogenic Cycle. 	
Unit 7	Design of media and growth requirements	4 lectures
	 Basic Considerations – Nutritional, hydrogen ion concentration, temperature and oxygen. Nutritional classification of bacteria. Concept of Pure culture, co-culture and mixed culture, Colony characteristics and Biofilm formation. Preservation and Maintenance methods for microbial cultures. 	

- 14. Microbiology–6th Edition (2006), Pelczar M.J., Chan E.C.S., Krieg N.R., The McGraw Hill Companies Inc. NY
- 15. General Microbiology Stanier R.Y., 5th edition, (1987) Macmillan Publication, UK.
- 16. Brock Biology of Microorganisms 9th ed. (2000), John M. Martinko, Jack Parker. Prentice hall, Upper Saddle River, New Jersey.
- 17. Presscott's Microbiology, 8th edition (2010), Joanne M Willey, Joanne Willey, Linda Sherwood, Linda M Sherwood, Christopher J Woolverton, Chris Woolverton, McGrawHil Science Engineering, USA.

Progressive Education Society's

Modern College of Arts, Science and Commerce (Autonomous), Shivajinagar,

Pune- 5

First Year of B.Sc. Biotechnology (2024 Course under NEP 2020) Semester II

Course Code: 24ScBIOU2202 Course Name: Lab Course on 24ScBIOU2201

Teaching Scheme: PR: 4Hours/ Week

Credit: 02(15P)

Examination Scheme: CIA: 20 Marks

End-Sem: 30 Marks

Prerequisite Courses:

• Basics of biology from 11th and 12th science.

Course Objectives:

• To learn in detail about microbiology laboratory and isolation, identification and control of microorganisms.

Practical	Title	15 Practicals
Practical -1	Introduction to Microbiology laboratory	2 Practical
	 Introduction to Microbiology Laboratory and Aseptic Transfer Techniques, Sterility testing. 	
Practical -2	Preparation of media	1 Practical
	Preparations of media for bacterial/fungal culture.	
Practical -3	Isolation of microorganisms	2 Practical
	 Isolation of bacteria by streak plate technique and preservation of microorganisms 	
Practical -4	Enumeration techniques	3 Practical
	Pour plate methodSpread plate method	
Practical -5	Observation of microorganisms	4 Practical
	 Wet mount Monochrome staining Gram staining Spore staining Fungal staining 	
Practical -6	Enrichment techniques	2 Practical
	By using Winogradsky's Column	
Practical -7	Growth Curve	1 Practical
	Study of bacterial growth curve	

Progressive Education Society's

Modern College of Arts, Science and Commerce (Autonomous) Shivajinagar, Pune - 5

First Year B.Sc. Biotechnology (2024 Course under NEP 2020) Semester II

Course Code: 24ScBioU2301

Course Name: Biophysics and instrumentation

Teaching Scheme: TH: 2 Hours/Week Credit: 02 C (2T)
Examination Scheme: CIA: 20 Marks End-Sem: 30 Marks

Prerequisite Courses:

• Basic Biology and Physics from XI and XII Science

Course Objectives:

- To study different models of atomic structure, Radioactivity concept and measurement, Biophysical properties of membrane
- To learn Separation techniques, Evaporation, Distillation, Chromatography, Electrophoresis and Microscopy
- To Study basics of instrumentations: Spectroscopy, Centrifugation, pH meter, Refrigeration
- To learn applications and use of various equipments

Course Outcomes:

On completion of the course, student will be able to-

Course Content		
	Title	Lectures
Unit 1	Atomic structure	3
	 Significance of second and third postulate of Bohr's 	
	model.	
	 Derivation of Radius and Energy value. 	
	 Bohr – Sommerfeld Model. 	
	 Vector Atom Model. 	
	 Quantum Numbers. 	
	Electronic Configuration.	
Unit 2	Radioactivity	3
	 Atomic number, Mass number, Isotopes, Isotones, 	
	Isobars.	
	 Alpha, Beta & Gamma radiation. 	
	 Biological Applications of Radioactivity. 	
	Measurement of Radioactivity	
Unit 3	BiophysicalpropertiesofMembrane	3
	Membrane structure and Membrane transport: active	

Unit 4	and passive transport, Co-transport (Uniport, Symport and Antiport) Osmosis, Diffusion. • Electrical properties of Membrane • Membrane potential and Action potential (Depolarization, Hyperpolarization and repolarization of Neuronal membrane). • Nernst Equation. IntroductiontoSeparationTechniques • Basics of Evaporation and Distillation • Chromatography, Electrophoresis, Types & Application	2
Unit 5	Microscopy	4
	 Resolving Power, Numerical Aperture, Image formation Types- light field & dark field microscopy Working and Construction of Simple, Compound & Stereo microscope, Inverted microscope, Phase Contrast microscope, Fluorescence microscope Electron microscope. 	-
Unit 6	Spectroscopy	3
	 Absorption spectroscopy, Beers & Lambert's Law Construction, working principle and applications (Biomolecules) of Colorimeter, Spectrophotometer, Flurometer 	
Unit 7	Centrifugation	3
	 Sedimentation Centrifugation – principle, components and RCF Types of centrifuge Types of centrifugation 	
Unit 8	pH meter	3
	 pH scale, isoelectric pH pH meter – electrodes pH indicators buffers applications of pH in biology 	
Unit 9	Thermoregulation	3
	Temperature measurementDifferent types of thermometersHomeostasis	
Unit 10	Refrigeration	3
	 Adiabatic and Isothermal Processes Critical temperature and Critical pressure Refrigeration – components, principle, Carnot Cycle and 	

Reverse Carnot cycle
Conditions for good refrigerant
Cryopreservation

- 1. Biophysics, an introduction. 1st edition. (2002) Cotteril R. John Willey and Sons Ltd., USA
- 2. Biophysics. 1st edition (2002), Pattabhi V and Gautham N. Kluwer Academic Publisher, USA.
- 3. Textbook of optics and atomic physics, 8th edition (1989) P.P. Khandelwal, Himlaya Publishing

House, India.

- 4. Instrumentation measurements and analysis 2nd edition (2003). Nakra and Choudhari, Tata McGraw Hill, India.
- 5. Nuclear Physics: An Introduction. 2nd edition (2011). S. B. Patel. Anshan Publication, India

Progressive Education Society's

Modern College of Arts, Science and Commerce (Autonomous) Shivajinagar, Pune - 5

First Year B.Sc. Biotechnology (2024 Course under NEP 2020) Semester II

Course Code: 24ScBioU2302

Course Name: Lab Course on 24ScBioU2301 (Biophysics and Instrumentation)
Teaching Scheme: TH: 4 Hours/Week
Examination Scheme: CIA: 20 Marks

Credit: 02 C (15P)
End-Sem: 30 Marks

Prerequisite Courses:

• Basic concepts of physics fromXI&XII

Course Objectives:

- Tolearnseparationtechniques, evaporation, distillation, chromatography, electrophoresisa ndmicroscopy
- To learn the functioning and calibration of few biophysical instruments
- To Study basics of instrumentations: Spectroscopy, Centrifugation, pH meter, Refrigeration
- To learn applications and use of various equipments

Practical	Title	15 Practical
Practical -1	Working and Calibration	2 practical
	Electronic Balance	
Practical2	Micropipette	2 munotical
Practical2	Microscopy	2 practical
	Components and working of	
	Bright field, Compound and	
	Inverted microscope	
Practical -3	Electrophoresis	1 practical
	Components and working of	
	Electrophoresis	
Practical -4	Chromatography	1 practical
I I WOWOUI T	Components and working of	1 pruement
	Chromatography	
Practical- 5	Distillation Unit	1 practical
1 lactical- 3	Distination Unit	1 practical
	Components and working of	
	Distillation unit	
D 41 1 6		4 4 1
Practical -6	Soxhlet unit	1 practical
	Components and working of	
	Soxhlet unit	
Practical- 7	To study quantitative assay using	1 practical
	To somely quantitions, o assety assets	- F -wow-
	Colorimeter	
Practical -8	To study Absorption Spectrum	2 practical
2 2 440 4 204 2	using Spectrophotometer of:	_ prwww.
	Protein	
	• DNA	
Dwasting! 0		1 mysettest
Practical- 9	pH meter	1 practical
	 Working and standardization of 	
	pH meter	
Practical -10	Centrifugation	1 practical
	Ü	•
	 Types of rotors 	
	 Types of centrifugations 	
	Applications of centrifugation	
Practical- 11	Vortex mixer and Magnetic Stirrer	1 practical
	6	

	Working PrincipleApplications	
Practical -12	Laboratory Incubator	1 practical
	 Types of Incubator: Bacterial, BOD, CO₂ and shaker incubator Working Principle Advantages 	
	 Applications 	

Progressive Education Society's

Modern College of Arts, Science and Commerce (Autonomous),

Shivajinagar, Pune - 5 First Year of B.Sc. Biotechnology (2024 Course under NEP 2020)

Semester II

Course Code: 24ScBIOU2401 Course Name: Biotechnology and Human welfare II

Teaching Scheme: TH: 2 Hours/Week Credit: 4C= 2 C (2T)
Examination Scheme: CIA: 20 Marks End-Sem: 30 Marks

Prerequisite:

• Basics of Science till 10th Standard.

Course Objectives:

• Topopularize Biotechnology among non-science students.

Course Outcomes:

After learning the course, students will be able to –

Unit	Title	30
		Lectures
Unit 1	Forensic science: Application of Biotechnology	8 lectures
	in forensic science	
	DNA fingerprinting	
	 Solving violent crimes such as murder and 	
	rape.	
	 Solving claims of paternity and other family 	
	relations.	
	 Identify endangered and protected species as 	

	an aid to wildlife protection.	
	 Determine pedigree for seed or livestock 	
	breeds for identification of food adulteration.	
Unit 2	Health Industry: Application of Biotechnology	7 lectures
	in health industry	
	Development of non-toxic therapeutic agents:	
	• Insulin.	
	 Human Growth Factors. 	
	• Factor VIII.	
	 Monoclonal antibodies. 	
	Biosimilars.	
	Recombinant live vaccines:	
	• HIV	
	Botulism	
	 Influenza 	
	Hepatitis	
	Diagnosis of diseases using Biotechnology:	
	 Various types of cancers. 	
	Hepatitis.	
	 Viral Infections. 	
	BacterialInfectiousdiseases.	
Unit 3	Introduction to Bioethics in Biotechnology	15lectures
	 Ethics in Agriculture and food. 	
	 Biopiracy, biowarfare. 	
	 Animal cloning andapplications. 	
	Ethics in Humans:	
	 Artificial insemination. 	
	 In vitro fertilization and embryotransplants. 	
	• Surrogacy.	
	 Organ Transplants. 	
	• Gene therapy.	
	• Eugenics.	
	Stem cell therapy.	
	Crisper Technology.	
	 Ethics in Human genome project. 	
	Human cloning.	
	 Public education of producing transgenic organism. 	
	Legal and important socioeconomic impacts	
	ofBiotechnology.	
	212101011111111111111111111111111111111	

- 1. Molecular biotechnology: principles and applications of recombinant DNA (2010). Glick, B. R., Pasternak, J. J., & Patten, C. L. Washington, DC: ASM Press.
- 2. Protein structure prediction: concepts and applications (2006) Tramontano, A
- 3. Principles of gene manipulation and genomics, (2013) Primrose, S. B., &Twyman, R. John Wiley & Sons.

- 4. Industrial Biotechnology (2009), Mathuriya A. S, Ane Books Pvt. Ltd.
- 5. New Products and New Areas of Bioprocess Engineering (Advances in Biochemical Engineering/Biotechnology, 68) by T. Scheper. Publisher: Springer Verlag
- 6. Prescott's Microbiology (2010), Joanne M. Willey, Linda M. Sherwood, Christopher J. Woolverton 8th Edition McGraw-Hill Publishers Eight edition.
- 7. Biotechnology and Safety Assessment, (2002), Thomas J.A., Fuch R.L Academic Press 3rd Edition.
- 8. Biological safety Principles and practices (2000) Fleming D.A., Hunt D. ASM Press 3rd. ed.
- 9. Bioethics Ben Mepham Oxford University Press 2008.
- 10. Bioethics & Biosafety (2007) R Rallapalli & Geetha Bali APH Publication.

Progressive Education Society's

Modern College of Arts, Science and Commerce (Autonomous),
Shivajinagar, Pune- 5
First Year of B.Sc. Biotechnology
(2024 pattern under NEP 2020)
Semester II

Course Code: 24ScBIOU2601 Course Name: Basic of Mathematics & Biostatistics

Teaching Scheme: TH: 2 Hours/ Week Credit: 02C (2T)

Examination Scheme: CIA: 20 Marks End-Sem: 30 Marks

Prerequisite Courses:

• BasicMathematics from 11th and 12thScience.

Course Objectives:

- To study Set theory, Differential equation, Calculus, Matrices.
- To study Introduction to Statistics, Descriptive Biostatistics, Probability and Probability distribution.

Course Outcomes:

On completion of the course, student will be able to-

- Solve differential equations, integration, set system-based problems etc.
- Know aboutbiological datacollection, sampling and analysis.
- Find Probability and Probability distribution.

Unit	Title	30 lectures

Unit 1	Sets	2 lectures
	 Definition. Types of sets with Venn diagram. Subset. Operations on sets. Cartesian Product and Relations. 	
Unit 2	Calculus	5 lectures
	 Function. Limit of a function. Continuity of function. Differentiation of Function. Integration. Area under the curve. 	
Unit 3	Differential Equation	5 lectures
	 Ordinary and Partial differential equation. Order and degree of differential equation. Homogeneous differential equation. Variable separable form. Exact differential equation. Linear differential equation. Applications: growth and decay, law ofcooling. 	
Unit 4	Matrices	3 lectures
	 Definition. Types of matrices. Addition of matrices. Multiplication of matrices. Determinant of matrices. Minor, cofactor, adjointand inverse of a matrix. System of linear equations. Cramer's Method. 	
Unit 5	Introduction to statistics	2 lectures
	 Need of Statistics in biology. Various types of data. Population, sample and sampling method. Representation of data using frequency distribution diagram. 	
Unit 6	 Descriptive Biostatistics Measures of central tendency. Measures of dispersion. Correlation. 	4 lectures

	Scatter diagram.	
Unit 7	Probability and Probability distribution	4lectures
	 Basics of Probability theory. Probability distribution. Binomial distribution. Poisson distribution. Normaldistribution. 	
Unit-8	Inferential Statistics	5 lectures
	 Hypothesis. Significant level. Test Statistics (t and z test). Chi square test. ANOVA (One way and Two way). 	

- 1. Ordinary and Partial Differential Equations, 19th Edition, Dr. M.D. Raisinghania
- 2. Matrices: ShantiNarayana S.CHAND& Co. New Delhi,1957
- 3. Mathematics Analysis, 5th Edition, S.C.Malik and SavitaArora
- 4. Fundamentals of Mathematical Statistics by S. C. Gupta and V. K. Kapoor, Sultan Chand & Sons.
- 5. Fundamental of Biostatistics, 7th Edition, Barnard Rosener,