Level:- 4.5 (First Year) Sem:I

Course Type	Course Code	Course Title	Credits		Teac Sche Hr/V	me	Scho and	luation eme x Mark	ne	
			TH	PR	TH	PR	CE	ESE	Total	
Subject 1 T(2)+(T/	24ScBioU1101	Biology I (The Diversity of Life)	2		2		20	30	50	
P) (2)orT(4)	24ScBioU1102	Lab Course on 24ScBioU1101		2		4	20	30	50	
Subject 2 T(2)+(T/	24ScBioU1201	Introductory and Organic Chemistry	2		2		20	30	50	
P) (2)orT(4)	24ScBioU1202	Lab Course on 24ScBioU1201		2		4	20	30	50	
Subject 3	24ScBioU1301	Introduction to Biochemistry	2		2		20	30	50	
T(2)+(T/ P) (2)orT(4)	24ScBioU1302	24ScBioU1301		2		4	20	30	50	
IKST(2)	24CpCopU1901	Generic IKS	2		2		20	30	50	
GE/OE (T/P) (2)	24ScBioU1401	Applications of Biology I	2		2		20	30	50	
SEC (P)(2)	24ScBioU1601	English Communication and Critical Thinking		2		2	20	30	50	
AECT(2)	24CpCopU1701/ 24CpCopU1702	MIL-I(Hindi)/MIL-I(Marathi)	2		2		20	30	50	
VECT(2)	24CpCopU1801	Environmental Science	2		2		20	30	50	
Total			14	08	14	16			550	
Non CGPA credits	24ScBleU1291	Calculus	4		4		40	60	100	
Non CGPA credits	24ScBleU1292	Introductory classical Physics + Physics Practical 1	2	2	2	4	40	60	100	

Level:- 4.5 (First Year) Sem:II

Course Type	Course Code	Course Title	Cred	lits	Teach Schen	me	Scho	luation eme and Marks	-
			TH	PR	TH	PR	CE	ESE	Total
Subject 1	24ScBioU2101	Biology 2	2		2		20	30	50
T(2)+T/P((Biology of Cells)							
2)	24ScBioU2102	Lab Course on 24ScBioU2101		2		4	20	30	50
or T(4)									
Subject	24ScBioU2201	Inorganic and Physical	2		2		20	30	50
2		Chemistry							
T(2)+P(24ScBioU2202	Lab Course on 24ScBioU2201		2		4	20	30	50

2)									
Subject	24ScBioU2301	Introduction to Microbiology	2		2		20	30	50
3	24ScBioU2302	LabCourseon24ScBioU2301		2		4	20	30	50
T(2)+P(
2)									
GE/OE	24ScBioU2401	Applications of Biology II	2		2		20	30	50
(T/P)(2)									
SECT(2)	24ScBioU2601	Immunology	2		2		20	30	50
AECT(2)	24CpCopU2703	English Communication Skills I	2		2		20	30	50
VECT(2)	24CpCopU2801	Democracy, Election and Governance	2		2		20	30	50
CC(2)	24CpCopU2001/	Physical Education/	2		2		20	30	50

	24CpCopU2011/ 24CpCopU2021/ 24CpCopU2031/ 24CpCopU2041/ 24CpCopU2051/ 24CpCopU2061/ 24CpCopU2071	NCC/ Fine Arts / Applied Arts / Visual Arts							
Total			14	08	14	16			55
Non CGPA credits	24ScBLEU2291	Algebra	4		4		40	60	10
Non CGPA credits	24ScBLEU2292	Modern Physics	2	2	2	4	40	60	10

Progressive Education Society's

Modern College of Arts, Science and Commerce (Autonomous),
Shivajinagar, Pune - 5
First Year B. Sc. Blended (Biosciences)
Semester I
2024 Course under NEP 2020)

Course Code: 24ScBioU1101 Course Name: Biology I (The Diversity of Life)

Teaching Scheme: TH: 2 Hours/Week Credit: 2T

Examination Scheme: CIA: 20 Marks End-Sem: 30 Marks

Prerequisite Courses:

Basic knowledge of Biology (SSC grade and HSC grade) is required that will help to study in depth of its other divisions.

Course Objectives:

- This course will introduce the concepts of biological evolution and their contribution to the evolution of diversity of life forms.
- Students will learn different theories on the evolution of life, Earth's history, animals, plants and other organisms and the levels of the biological chain from molecules to organisms to their forms.
- It will also provide the basics of biological classification and introduction to major domains and kingdoms of biological diversity, and the structure and biology of these organisms.
- The course is contained with Laboratory Experiments and Field study too. The field study allows students to gain experience in incorporating the theoretical perspectives learned in the classroom with experiences gained in the field.

Course Outcomes:

• On completion of the course, students will be able to know about the origin of earth, origin of diversity of life, covering the domains and classification of plants, animals and micro-organisms.

- As it covers the details for and highlights the origin of life students will know the array of life on earth and how it is classified.
- Students get the insights for what distinguishes one organism from another and much more.

Unit	Title	Lectures
TT 1: 1	77 (C :	30 Lectures
Unit 1	Unifying themes in Biology	12 Lectures
	 Theory of evolution: understanding life's diversity 	2
	 Evolutionary relationships (phylogenies) are summarized in classifications 	2
	Chemical evolution of life – Molecules to cells	2
	Cell theory and the origin of life	2
	Prokaryotic Cells: Bacteria and Archaea	2
	Evolution of the eukaryotic cell	2
	Endosymbiosis	1
Unit 2	Diversity, structure and biology of major groups	18 Lectures
	 Protists 1 - Red and Green algae 	1
	Protists 2 - Chromists	
	 Protists 3 - Dinoflagellates and apicomplexans, flagellates, ciliates, amoebae 	
	 Evolution of sex, life cycles 	1
	Origins of multiculticellularity	1
	Slime moulds and fungi	1
	• Fungi 2	
	Introduction to Land Plants	1
	Bryophytes	
	 Evolution of vascular tissue, Lycophytes, fern allies, early fossil land plants 	
	• Ferns	1
	 Seed plants, the seed and secondary growth, Cycads and Ginkgo 	1
	Conifer diversity and biology	1
	 Angiosperm structure, biology and diversity, the flower, double fertilization. 	
	Angiosperm phylogeny and evolution	
	Introduction to animals (Metazoa)	1

•	Simple animals	1
•	Protostomes-Flatworms and annelids	1
•	Molluscs	1
•	Arthropods	1
•	Deuterostomes, Echinoderms-Chordates	1
•	Fishes -sharks/rays, teleosts, coelacanth,	1
	lungfish	
•	Amphibians	1
•	Reptiles	1
•	Birds	
•	Mammals	1
•	The Primate story	

References:

- 1. Reece, Taylor, Simon and Dickey Campbell Biology: concepts and connections, 7th Edition, Pearson Education (Singapore) Pvt. Ltd.
- 2. General Zoology By Goodnight and others, IBH Publishing Co.,
- 3. R.L. Kotpal, 10th Edition.,2009 Modern text book of Zoology, Invertebrates, Rastogi publications, Meerut.
- 4. Parker J. and Haswell, W., Text-Book of Zoology, ELBS Edition.
- 5. Cleveland Hickman Jr., Larry Roberts, Susan Keen, Allan Larson and David Eisenhour Animal Diversity, 8th Edition, McGraw Hill Publication.
- 6. Das, Datta and Gangulee College Botany (Vol I), Published by New Central Books Agency (P). Ltd.
- 7. V. Verma Botany, 2010, Ane Books Pvt Ltd.
- 8. A.C. Dutta Botany for Degree Students, 6th Edition, Oxford University Press, New York.
- 9. Richard S.K. Barnes The Diversity of Living Organisms, John Wiley and Sons Ltd., Oxford, United Kingdom.
- 10. Lynn Margulis and Michael J. Chapman Kingdoms and Domains: An Illustrated Guide to the Phyla of Life on Earth, 4th edition, Academic Press; (1st edition in January 26, 2009).
- 11. Brian K. Hall; BenediktHallgrímsson Strickberger's Evolution, Fourth Edition, Jones and Bartlett Publishers, Inc.
- 12. Mark Ridley, 2004, 3rd Edition Evolution, Blackwell Publishing.
- 13. Carl T. Bergstrom & Lee Alan Dugatkin Evolution (second edition), W. W. Norton & Company; Second edition.
- 14. Douglas J. Futuyma Evolution, 2nd/3rd Edition, Sinauer Associates.

Progressive Education Society's

Modern College of Arts, Science and Commerce (Autonomous),
Shivajinagar, Pune - 5
First Year B. Sc. Blended (Biosciences)
(2024 Course under NEP 2020)

Course Code: 24ScBioU1102 Course Name: Lab Course on 24ScBioU1101
Teaching Scheme: TH: 4 Hours/Week Credit: 2P

Examination Scheme: CIA: 20 Marks End-Sem: 30 Marks

Prerequisite Courses: Knowledge of Basic biology from XI & XII Science.

Course Objectives:

- Study of Evolution of Plants from Bryophytes to Angiosperms with examples.
- Study of Animal diversity with different examples.

Course Outcomes:

On completion of the course, student will be able to-

• Learn different characteristic features of Organisms that inhabit in nature.

Course Contents

Semester I

Practicals	Title	No. of practicals 10 p
Practical-1	Study of Bryophytes.	1 Practical
	 To study characteristics of bryophytes. 	
Practical-2	Study of Pteridophytes.	1 practical
	 To Study characteristics of Pteridophytes. 	
Practical-3	Study of Red and Green Algae.	1 practical
	 To Study characteristics of Red and Green Algae. 	
Practical-4	Study of Gymnosperms.	1 practical
	 To Study characteristics of Gymnosperms. 	
Practical-5	Study of Fungi.	1 practical
	 To Study characteristics of Fungi. 	
Practical-6	Study of Angiosperms.	1 Practical
	 To Study characteristics and reproductive parts of Angiosperm flower with examples. 	
Practical-7	Study of Phylum Porifera, Cnidaria and Platyhelminthes.	1 practical
	 To Study characteristics of Porifera, Cnidaria and Platyhelminthes with examples. 	

Practical-8	Study of Phylum Aschelminthes, Annelida and Arthropoda.	1 practical
	 To study characteristics of Aschelminthes, Annelida and Arthropoda with examples. 	
Practical-9	Study of Phylum Mollusca and Echinodermata.	1 practical
	 To study characteristics of Mollusca and Echinodermata with examples. 	
Practical-10	Study of Phylum Hemichordata and Chordata (Pisces and Amphibians).	1 practical
	 To study characteristics of Hemichordata and Chordata (Pisces and Amphibians) with examples. 	
Practical-11	Study of Phylum Chordata (Reptilia, Aves and Mammalia).	1 practical
	 To study characteristics of Chordata (Reptilia, Aves and Mammalia) with examples. 	
Practical-12	Primates	1 practical
	Comparative study of Primates. (skulls etc.)	

Progressive Education Society's

Modern College of Arts, Science and Commerce,
Shivajinagar, Pune - 5

FirstYear of B.Sc.Blended (Bioscience)
(Semester I)
(2024 Course under NEP 2020)

Course Code: 24ScBioU1201 Course Name: Introductory and organic chemistry

Teaching Scheme: TH: 2 Hours/Week Credit: 2T

Examination Scheme: CIA: 20 Marks End- Sem: 30 Marks

Prerequisite Courses: Knowledge of Basic chemistry from XI & XII Science.

Course Objectives:

• To Study Basics of chemistry

- important reactions which will help various processes in biological system
- To study importance of pH and buffer in chemical and biochemical reactions
- To understand chemical kinetics of chemical and biochemical reactions
- To expertize students in biochemical calculations

Course Outcomes:

On completion of the course, student will be able to-

- Study all basic fundamentals of chemistry
- Can extend their analytical thinking in research field.

	General Chemistry				
Chapters	Title	No. of lectures			
Chapter 1	The Periodic Table	1 Lecture			
_	General Introduction				
	Groups				
	• Rows				
	Modern periodic law				
Chapter 2		2 Lectures			
1	Molecular Structure and Bonding				
	 Lewis structures Formal charge Resonance 				
	• VSEPR – predicting the shapes of molecules				
	Polarity of molecules				
	Covalent Bonding valence bond theory				
	(LocalizedElectron model)				
	Molecular orbital theory				
CI	Intermolecular forces	2.7			
Chapter 3	Acids and Bases	3 Lecture			
	 The Nature of Acids and Bases 				
	Lowry Bronsted Theory				
	 Lewis Acids/Bases 				
	 Dissociation of Carboxylic Acids 				
	Amine Basicity				
	Acid Strength				
	The pH Scale				
	Calculating the pH of Strong Acid Solutions				
	Calculating the pH of Weak Acid SolutionsBases				
	 Strategy for Solving Acid-Base Problems:				
	ASummary				
	Buffers				
	Polyprotic acids				
	1 oryprome meres	1			
	Organic Chemistry				
Chapter 1	Carbon – the basis of life	2 Lecture			
Chapter 2	Structure and Bonding Alkanes (sp ³ Hybridisation)	2 Lecture			
	Covalent bonding - H 2				

	 S-bonding and sp3 hybridisation in methane and ethane Structural isomerism Methane, ethane, nomenclature of saturated hydrocarbons Conformational isomerism: ethane, butane Stereochemistry, Optical activity, enantiomers and their physical/chemical properties. Racemates. Designation of absolute configuration Diastereoisomers Meso compounds Cycloallkanes Conformational isomerism of cyclohexanes 	
Chapter 3	Structure and Bonding Alkenes (sp ² Hybridisation)	1 Lecture
	 sphybridisation, s and p bonding in ethene Nomenclature of alkenes Geometrical isomerism Conjugated alkenes 	
Chapter 4	Structure and Bonding of Alkynes (sphybridisation)	1 Lecture
	sphybridization, s and p bonding in ethyneNomenclature of alkynes	
Chapter 5	Functional Groups	1 Lecture
	 Haloalkanes Alcohols Ethers Amines Carbonyl compounds Carboxylic acids and derivatives 	
Chapter 5	Electrophiles and Nucleophiles	2L
	 Arrow conventions Organic acids and bases Strengths of acids and bases: electronegativity, Hybridization, resonance 	
Chapter 6	Nucleophilic substitution reactions	2L
	 Nucleophiles and electrophiles SN1 and SN2 reactions Determination of mechanism by stereochemical and kinetic methods 	

	Properties of good leaving groups	
	Properties of good nucleophiles	
Chapter 6	Elimination reactions	2L
	• E1 and E2 reactions	
	Determination of mechanism by	
	stereochemical	
	and kinetic methods	
C1 4 7	Dehydration of alcohols	OI.
Chapter 7	Addition reactions	2L
	Markovnikov's rule	
	Hydration of alkenes	
Chapter 8	Thy drawton of uniones	2 L
T	Electrophilic aromatic substitution reactions	
	Substitution reactions of benzene:	
	halogenation,	
	nitration, sulfonation, Friedel-Crafts	
	acylation and	
CI O	alkylation	21
Chapter 9	Nucleophilic addition reactions	2L
	 Addition to carbonyl groups by cyanide, 	
	Grignard	
	reagents, acetylide anions	
	 Synthesis and chemistry of acids, amides, 	
	esters,	
C1 10	acyl chlorides and anhydrides	21
Chapter 10	Organic redox reactions	3L
	Reductions: Catalytic hydrogenation,	
	hydride	
	reagents	
	Oxidations: Benzylic oxidation	
	Oxidation of primary alcohols to aldehydes	
	then	
	carboxylic acids by Cr(VI) reagents	
	Oxidation of secondary alcohols to ketones	
	by Cr(VI) reagents	
Chapter 11	Cr(VI) reagents	5L
Chapter 11	Thermal physics, physical chemistry, and	JL
	the environment (Narrative)	
	Zeroth Law of Thermodynamics	
	Thermal expansion and absorption of heat	
	Heat transfer, conduction, emission,	
	absorption	
	Second Law of Thermodynamics,	
<u> </u>	J,	

	Irreversible processes, entropy, free energy	
	Real world examples - eg solar energy,	
	geothermal, wind power	
Chapter 12	goodiermai, wind power	5 L
Chapter 12	Elasticity, fluids and gases (Narrative)	3 L
	Equilibrium and elasticity	
	Density and Pressure, Pascal's and	
	Archimedes' Principles	
	Continuity and Bernoulli's Equation	
	Ideal gases (Kinetic theory of gases)	
	Mean free path, molecular speed distribution	
	Specific heat, adiabatic expansion	
	Real world examples - eg wind power,	
	hydro, blood circulation, water in plants,	
	materials, osmosis, wind and atmosphere	
Chapter 13	1	0L
	Elasticity, fluids and gases (Narrative)	
	Equilibrium and elasticity	
	 Density and Pressure, Pascal's and 	
	Archimedes' Principles	
	Continuity and Bernoulli's Equation	
	Ideal gases (Kinetic theory of gases)	
	Mean free path, molecular speed distribution	
	Specific heat, adiabatic expansion	
	 Real world examples - eg wind power, 	
	hydro, blood circulation, water in plants,	
	materials, osmosis, wind and atmosphere	
	Ordinary differential equations: definition of	
	ODE, order, general solution, initial	
	conditions; separable ODEs	
	Solving linear ODE using integrating factor	
	Applications of 1st order ODES: ecology	
	models	
	Applications of 1st order ODES: chemical	
	reaction rates, Newton's law of cooling	
	Particular solutions of inhomogeneous	
	constant coefficient linear ODEs using	
	method of undetermined coefficients;	
	principle of superposition • Applications of 2nd order ODEs: Springs	
	Applications of 2nd order ODEs: Springs Applications of 2nd order ODEs: LPC orders	
	 Applications of 2nd order ODEs: LRC series electrical circuits 	
	Real world contextual examples in physics	
	and chemistry and the application of ODEs	
	(selection of examples depending on student	
	cohort)	
	•••••	

References:

- Stereochemistry: Conformation and mechanism by P.S.Kalsi
- Organic chemistry by Jonathan clayden, nick greeves and stuart warren
- University General Chemistry, 1st edition (2000), C.N. R. Rao, Macmillan Publishers, India,
- Principles of Physical Chemistry, 4th edition (1965), S.H. Maron and C.F. Prutton, Collier Macmillan Ltd 3. The elements of Physical Chemistry, 5th edition (2009), Atkins P, de Paula J., W. H. Freeman Publication, USA
- An Introduction to Electrochemistry, edition reprint, 2011, Samuel Glasstone, BiblioBazaar, USA
- Physical Chemistry for biological sciences, 1st edition, (2005), Chang R., University Science Books, USA 6. Physical Chemistry, 1st edition, (2003) David Ball, Thoson Learning, USA.
- Essentials of Physical Chemistry, 24th edition, (2000), B S Bahl, G D Tuli, ArunBahl, S. Chand Limited, India.
- Concise Inorganic Chemistry . 5th edition (2008), Author: J. D. Lee, John Wiley & Sons, USA.
- Organic Chemistry, 6 th edition, (1992), Morrison Robert Thornton, Pearson Publication, Dorling Kindersley (India Pvt. Ltd.)
- Guide book to Mechanism in Organic chemistry
- organic Chemistry by Peter Sykes, 6th edition, (1996), Prentice Hall, India.

Progressive Education Society's

Modern College of Arts, Science and Commerce,
Shivajinagar, Pune - 5
First Year of B.Sc. Blended (Biosciences)
(Semester I)
(2024 Course under NEP 2020)

Course Code: 24ScBioU1202

Course Name: Lab Course on 24ScBioU1201

Teaching Scheme: TH: 3 Hours/Week Credit: 2C

Examination Scheme: CIA: 20 Marks End-Sem: 30 Marks

Prerequisite Courses: Knowledge of Basic chemistry from XI & XII Science.

Course Objectives:

- To Study Basics of chemistry
- To study extraction method
- To study importance of pH and buffer in chemical and biochemical reactions
- To understand chemical kinetics of ester hydrolysis reaction
- To expertize students in biochemical calculations

Course Outcomes:

On completion of the course, student will be able to-

- Study all basic fundamentals of chemistry
- Can extend their analytical thinking in research field.
- Develops practical hand

Practicals	Title	No. of practicals 12P
Practical-1	Acid base titration	1 Practical
	 To standardize given NaOH using oxalic acid To find normality and molarity of given HCl an H₂SO₄ 	
Practical-2	Glass electrode	1 practical
	 To find normality of given HCl using Na₂CO₃ solution To investigate pHof strong acid and weak base 	
Practical-3	 Synthesis and analysis of polyiodide salt 	1 practical
	 To synthesize a polyiodide salt To determine the chemical formula of the polyiodide salt using analytical methods 	
Practical-4	Buffer solutions	1 practical
	To prepare standard strong acid and strong base solution and using them to prepare buffer solutions	
Practical-5	Phmetry of buffer solutions	1 practical
	 To determine Phof the solution sing pHmeter and using Henderson Hasselbalch equation to find out pKa value of the solution To determine pHof unknown buffer solution 	

Practical-6	Chemical Kinetics	1 practical
	 To study the hydrolysis of an ester using two 	
	concentrations and hence to find the rate	
	constant of reaction	
Practical-7		1 practical
	Phmetry	
	 To find pKa using Ph metric titration of weak 	
	acid against strong base	
Practical-8		1 practical
	Isolation and purification of curcumin from	
	turmeric	
	 To isolate and purify the curcumin from given 	
	turmeric powder sample	
Practical-9		1 practical
	Preparation of solution	
	 To prepare acid and base solution having 	
	different concentrations	
Practical-10	Introduction to Glasswares and chemicals	1 practical
Practical-11	Basic techniques used in synthesis	1 practical
	Recrystallization	
	• TLC	
Practical-12		1 practical
	Simple titration methods	1
	Simple titration between acid and base	

Progressive Education Society's

Modern College of Arts, Science and Commerce (Autonomous)

Shivajinagar, Pune - 5

First Year of B.Sc.Blended biosciences (NEP)

(2024 Course under NEP 2020)

Course Code: 24ScBLU1301 Course Name: Introduction to Biochemistry

Teaching Scheme: TH: 2 Hours/Week Credit: 2C (30 L)

Examination Scheme: CIA: 20 Marks End-Sem: 30 Marks

Prerequisite: Basic chemistry from XI & XII Science.

Course Objectives:

- To Study Basics of biochemistry and important reactions which will help to understand various processes in biological system
- To study chemistry of biomolecules
- To understand structure and functions of biomolecules

Course Outcomes:

On completion of the course, student will be able to-

- Study all basic fundamentals of chemistry and biomolecules.
- Understand structure and functions of biomolecules.

Chapter-	Unit	lectures
Chapter-1	Biological chemistry	2 lectures
	Introduction to biochemistry	
	Historical perspective- cellular and	
	chemical foundation	
	• origin of life,	
	 Abiotic production of biomolecules 	
Chapter-2	Water	3 lectures
	 Water as biological medium 	
	 Properties of water 	
	• Anomalous behaviour, weak	
	interactions in water	
	• interaction of biological molecules in	
	water, Hydrogen bonding	
	• ionization of water, osmosis,	
	• concept of pH	
	• buffers	
	Biological buffers	
	• Types of bond	
	Covalent and noncovalent	
	interactions in biomolecules with	
	suitable example	
	 functional groups and modification of functional group relevant to 	
	biomolecules.	
Chapter-3	Basic Biomolecules	6 lectures
1	Basic Biomolecules: Carbohydrates:	
	sugars and nonsugars	
	 classification of carbohydrates- 	
	mono, oligo, dextrins and	
	polysaccharide. Monosaccharides:	
	classifications of monosaccharide	
	based on functional group (ketoses	
	and aldoses) based on number of	
	carbon atoms	
	• D and L configuration	
	• conformations	
	• mutarotation	
	epimers	
	anomers,	

Chapter-6	tertiary and quaternary structure withexample. Denaturation and renaturation Vitamins	3 Lectures
	 Proteins: introduction, Polymer of amino acids, Classification of amino acids, essential amino acids, Configuration, properties, zwitterion, isoelectric point pI, properties of peptide bond, primary structure secondary structure (alpha helix, beta pleated sheets, pitch value) Ramachandran plot Secondary repeats 	
Chapter-5	 acids with examples, its significance, Triacylglycerols chemical and physical properties, complex lipids: Phospholipids, sphingo lipids, cerebrosides, gangliosides, prostaglandin cholesterol (good and bad) Steroids. 	5 lectures
Chapter-4	Lipids • Function of lipids, • classification of lipids, • Simple lipids- its structure and classes, • fatty acids, • saturation and unsaturation of fatty	3 lectures
	 chemical and physical properties; alpha, beta glycosidic linkage oligosaccharides reducing and non reducing sugars inversion of sugar polysaccharides- its classification based on function (1. Storage polysaccharide eg starch, glycogen and inulin 2.structural polysaccharides eg. cellulose, chitin) mucopolysaccharide functions of Carbohydrate 	

	 riboflavin, niacin, PIP, CoenzymeA, lipoic acid , Folic acid and B12 	
Chapter-7	Enzymes	5 lectures
	 Biocatalyst, Specificity, active site, Energy of activation, Lock and key, Induced fit hypothesis, prosthetic groups, cofactors, coenzyme, holoenzyme, apoenzyme, IUB system of enzymes classification. Enzyme inhibition, Basics of enzyme kinetics, Parameters affecting enzyme activity (temp, pH, substrate, cofactor,enzyme con.) 	
Chapter-8	Nucleic acids	3 Lectures
	 chemical names and structures of nitrogen bases, Nucleosides, nucleotides, Polynucleotide, DNA and RNA, Forces stabilizing nucleic acid structure 	

Progressive Education Society's

Modern College of Arts, Science and Commerce(Autonomous),
Shivajinagar, Pune – 5
First Year of B.Sc. Blended Bioscience
(2024 Course under NEP 2020)

Course Code: 24ScBleU1291 Course name: Calculus

Credits: 4T

Examination Scheme: CIA: 40 Marks END-SEM: 60 Marks

Prerequisite: 11th and 12th standard Mathematics.

Course Objectives: To learn,

- Logic And Proof
- Sequences and Series
- Differential Calculus
- Integral Calculus

Course Outcomes:

On completion of the course, student will be able to-

- Understand set theory, logical connectives, propositional logic, number system, proofs by induction, direct proofs, proofs by contrapositive.
- Understand sequences its convergence and divergence, series, convergence of series by using different tests.
- Solve integrations by different techniques, solving improper integrals, applications of integrations.
- Solve simple first order differential equations, and should know its applications.

	Mathematics	
Chapter	Title	Lectures
Chapter 1	Logic and Proof	15 lectures
Chapter 1	 Basic set theory (review) Logical connectives (conjunction, disjunction, negation, conditional, biconditional) and truth tables Propositional logic, logical equivalence, logical laws, Quantifiers, predicate calculus Relations, equivalence relations, ordering Functions including injective, surjective, bijective, inverse, composition Number systems: Natural numbers, integers, rational numbers and their properties (eg closure under addition/multiplication/division; existence of additive/multiplicative 	13 rectures

	Riemann integration	
Chapter 4	Integral Calculus	9 lectures
Tutorials		3 lectures
Chapter 3	Differential Calculus Review of differential calculus: limits, derivative, differentiation rules incl. polynomials, trigonometric, exponential, log functions; product, quotient, chain rules Review of inverse trigonometric functions and their derivatives, implicit differentiation	8lectures
Tutorials		4 lectures
Tutorials Chapter 2	 Proof methods: induction Natural numbers, integers, rational numbers Real numbers Sequences and Series Sequences, limits, convergence and divergence Proving limits using definition Methods for evaluating limits: standard limits, limit theorems, continuity rule, sandwich theorem Series, convergence and divergence of series, geometric series, harmonic pseries Series convergence tests: divergence test, comparison test Series convergence tests: ratio test, integral test, alternating series test Power series, Taylor polynomials Taylor series Taylor's theorem, error in Taylor polynomial estimates 	4 lectures 12 lectures
	 identity/inverses) Real numbers and their properties; completeness property Proof methods: direct proof, contrapositive Proof methods: contradiction, proof 	

Tutorials	 Fundamental Theorem of Calculus; review of standard antiderivatives Techniques of integration (review): derivative present substitution, linear substitution Techniques of integration (review): integration of trigonometric functions using identities Techniques of integration (review): integration of rational functions including partial fractions, integration yielding inverse trig functions Techniques of integration (review): trigonometric substitutions; integration by parts Improper integrals Applications of integration: areas between curves Applications of integration: volumes of surfaces of revolution 	1 lecture
Chapter 5	ODEs - Designed and shared collectively by Physics. Chemistry and Mathematics.	4 lectures

Progressive Education Society's

Modern College of Arts, Science and Commerce,
Shivajinagar, Pune - 5

First Year of B.Sc.Blended (Biosciences)
(2024 Course under NEP 2020)

Semester I

Course Code: 24ScBleU1292

Course Name: Introductory classical Physics + Physics Practical 1

Teaching Scheme: TH: 3 Hours/Week Credit: 4C(2T+2P)

Examination Scheme: CIA: 40 Marks End-Sem: 60 Marks

Prerequisite Courses:

• Kinematics, equation of motion, elesticity, waves and oscillations, fluid mechanics, geometrical optics

Course Objectives:

• Students will be given the basic information of introductory classical physics, waves, gravitation

Course Outcomes:

On completion of the course, student will be able to-

• Apply the basic knowledge of classical mechanics in day to day life

Chapter-1	Classical mechanics	12 Lectures
	 Straight line motion Vectors Two & three dimensional motion Force & Motion: Newton's Law, Drag & friction Kinetic energy, Work, Power Potential Energy, conservation of energy Collision & Momentum Rotational Motion Angular Momentum 	
Chapter-2	Gravitation	6 Lectures
	 Newton's law of gravity, Superposition Gravity at the Earth's surface, far above the earth & within the earth Work & gravitational potential energy Kepler's Laws Orbital motion & energy Einstein's equivalence principle, gravity, gravitational lenses, gravitational waves 	
Chapter-3	Thermal Physics	8 Lectures
	 Zeroth law of thermodynamics Thermal expansion & absorption of heat First law of thermodynamics: adiabatic process, constant volume pressure processes, enthalpy, cyclic process, free expansion Heat transfer, conduction, emission, 	

	 absorption Second law of thermodynamics, irreversible process, entropy, free energy Application 	
Chapter-4	Elasticity, Fluids, gases	12Lectures
	 Equilibrium &elasticity Density &Pressure, Pascal's & Archimedes' principle Continuity & Bernoulli's equation Ideal gases (Kinetic theory of gases) Mean free path, molecular speed distribution Specific heat, adiabatic expansion Applications 	
Chapter-5	ODE	8 Lectures
	 Ordinary differential equations Solving linear ODE using integrating factor Applications of 1st order ODES: ecology models, Newton's law of cooling Second-order ODEs: definitions of homogeneous/inhomogeneous, linear/non-linear; solution of homogeneous constant-coefficient linear ODEs Applications of 2nd order ODEs: Springs, LCR series electrical circuits 	

Prerequisite Courses: Knowledge of Basic physics from XI & XII Science.

Course Objectives:

• Students will be given the basic information of electricity, magnetism, Thermal Physics, Elasticity, Fluids, Gases

Course Outcomes:

On completion of the course, student will be able to-

• Apply the basic knowledge of classical mechanics in day to day life

Practical	Title	No.of Practical 12P
Practical-1	Measurements using Various Instruments	1 Practical
Practical-2	Static Friction	1 Practical
Practical-3	• Frequency of A.C.	1Practical
Practical-4	Plane diffraction grating	1 Practical
Practical-5	M.I of flywheel	1 Practical
Practical-6	Polarimeter	1Practical
Practical-7	Modulus of rigidity: Torsional Pendulum	1Practical
Practical-8	Simple pendulum	1Practical
Practical-9	Flat Spiral Spring	1Practical
Practical-10	Logic Gates	1Practical
Practical-11	Young's Modulus	1Practical
Practical-12	Characteristics of Thermistor	1Practical

Progressive Education Society's Modern College of Arts, Science and Commerce (Autonomous), Shivajinagar, Pune - 5 First Year B. Sc. Blended (Biosciences) (2024 Course under NEP 2020)

Semester II

Course Code: 24ScBioU2101 Course Name: Biology 2 (The Biology of Cells)

Teaching Scheme: TH: 2 Hours/Week Credit: 2 T

Examination Scheme: CIA: 20 Marks End-Sem: 30 Marks

Prerequisite Courses:

Basic knowledge of Biology (SSC grade and HSC grade) is required that will help to study in depth of its other divisions.

Course Objectives:

- This course will introduce the students to basic unit of life, the cell, and its structural and functional elements. Students will learn the components of a cells and their functioning, cell division, contribution of a cell to form multicellular units, and flow of genetic information within a biological system through the central dogma of life.
- This subject covers details and highlights of the cell ant its components which is very helpful to get knowledge how components of life works at micro level.

Course Outcomes:

- On completion of the course, student will be able to understand the structure and function of each of the organelles and cell division and central dogma of life.
- Students will gain elementary knowledge about how things work at micro level deep inside all organisms', cell to cell signaling and communication.

Chapter	Title	Lectures 36 Lectures
		+ 12
		Tutorials
Chapter-1	Chemistry of Life	
	 The chemical basis of life 	1
	 Bioenergetics 	1
	 Enzymes and catalysed reactions: 	2
	 Metabolism: Catabolism and anabolism 	2
	 Concatenation and Biopolymers 	1
	 Stereochemistry and Biomolecular chirality 	1
	 Biochemistry and Biomolecular structure 	2
	Small inorganic molecules of biological importance	2
	Tutorial	4
Chapter-2	The Biology of Cells	
	 Introduction to Cell Biology 	2
	Theme: The cell contained	
	The plasma membrane	2
	 Cell walls, extracellular matrix, 	2

cellulose synthesis, other cell wall components	
Cytoplasm: content, chemistry and properties	1
Cytoskeleton, actin filaments, microtubules	2
Tutorial	2
Theme: Information flow in the cell	
Nucleus, chromosomes, DNA	2
Genes and the genetic code	3
Control of gene expression	3
Theme: Harvesting energy	
Mitochondria, ATP, energetic	2
reactions, electron transport pathways, cellular respiration	
Chloroplasts, photosynthesis, historical experiments, pigments, photosystems	2
Tutorial	2
Theme: Multicellularity and the Dividing Cell	
Cell division, cell cycle, mitosis, cytokinesis, division and distribution of organelles	3
Meiosis, formation of haploid cells	1
Communication and signaling, recognizing and responding	3
Cell differentiation and multicellularity	2
Tutorial	2

References:

- 1. Molecular Cell Biology. 7th Edition, (2012) Lodish H., Berk A, Kaiser C., KReigerM.,Bretscher A., Ploegh H., Angelika Amon A., Matthew P. Scott M.P., W.H. Freeman and Co., USA.
- 2. Molecular Biology of the Cell, 5th Edition (2007) Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, Peter Walter. Garland Science, USA
- 3. Cell Biology, 6th edition, (2010) Gerald Karp. John Wiley & Sons., USA.
- 4. The Cell: A Molecular Approach, 6th edition (2013), Geoffrey M. Cooper, Robert E. Hausman, Sinauer Associates, Inc. USA.

Progressive Education Society's Modern College of Arts, Science and Commerce (Autonomous), Shivajinagar, Pune - 5 First Year B. Sc. Blended (Biosciences) (2024 Course under NEP 2020) Semester II

Course Code: 24ScBioU2102 Course Name: Lab Course on 24ScBioU2101

Teaching Scheme: TH: 4 Hours/Week Credit: 2P

Examination Scheme: CIA: 20 Marks End-Sem: 30 Marks

Prerequisite Courses: Knowledge of Basic biology from XI & XII Science.

Course Objectives:

• To study mitosis and meiosis in plants.

• To study cell count using haemocytometer.

Course Outcomes:

On completion of the course, student will be able to-

- Distinguish between mitosis and meiosis.
- Isolate nucleus, mitochondria.
- Study characteristics of cells.

Course Contents:

Semester II

Practicals	Title	No. of practicals
		10 p
Practical-1	Study of Mitosis.	1 Practical
	• To observe and study the process of mitosis.	
Practical-2	Study of meiosis in plants.	1 practical
	To observe and study the process of meiosis of Ptoridon bytes	
	of Pteridophytes.	
Practical-3	Observation of cell organelles.	1 practical
	To identify and study characteristics of cell	
	organelles.	
Practical-4	To observe cell count using Haemocytometer.	1 practical
	To observe and study cell count.	
Practical-5	Use of Micrometry.	1 practical
	 To measure the size of cell by micrometry. 	
Practical-6	Isolation of nucleus, mitochondria of lysosomal	1 Practical
	functions.	
	 To isolate nuclei and mitochondria from 	

	cauliflower.	
Practical-7	Study of cell lysis.	1 practical
	 To studymethods of cell lysis. 	
Practical-8	Differential white blood cell count.	1 practical
	To find differential leucocyte count.	

Progressive Education Society's

Modern College of Arts, Science and Commerce,
Shivajinagar, Pune - 5

First Year of B.Sc.Blended (Biosciences)
(2024 Course under NEP 2020)
(Semester II)

Course Code: 24ScBioU2201

Course Name: Inorganic and Physical chemistry

Teaching Scheme: TH: 2 Hours/Week Credit: 2T

Examination Scheme: CIA: 20 Marks End-Sem: 30 Marks

Prerequisite Courses: Knowledge of Basic chemistry from XI & XII Science.

Course Objectives:

• To Study Basics of chemistry

- important reactions which will help various processes in biological system
- To study importance of pH and buffer in chemical and biochemical reactions
- To understand chemical kinetics of chemical and biochemical reactions
- To expertize students in biochemical calculations

Course Outcomes:

On completion of the course, student will be able to-

- Study all basic fundamentals of chemistry
- Can extend their analytical thinking in research field.

Chapters	Title	No. of lectures
Chapter 1	Chemistry of Life	12 L
	 The chemical basis of life 	
	 Bioenergetics 	
	Enzymes and catalysed reactions	
	Metabolism: Catabolism and anabolism	

	Concatenation and Biopolymers	
	Stereochemistry and Biomolecular chirality	
	Biochemistry and Biomolecular structure	
	Small inorganic molecules of	
	biologicalimportance	
Chapter 2	Inorganic Chemistry	15 L
	Ionic Compounds and their Solutions	
	Structures of Solids	
	Main Group Chemistry	
	Redox reactions and electrochemistry	
	The transition metals : a survey	
	Coordination Chemistry	
Chapter 3	Oscillations and Waves	6 L
•	Simple harmonic motion, pendulum, diatomic molecules	
	Damped harmonic motion, resonance - electronic circuits, evolution of populations	
	One dimensional waves , Interference and standing waves, Sound waves and the speed of sound, Intensity, sound level and the physics of music Depoler effect and supersonic metion, shock	
	 Doppler effect and supersonic motion, shock 	
Chanter 4	waves	15 L
Chapter 4	waves Modern Physics and Quantum Chemistry	15 L
Chapter 4	waves Modern Physics and Quantum Chemistry • Challenges to classical physics; special	15 L
Chapter 4	waves Modern Physics and Quantum Chemistry	15 L
Chapter 4	waves Modern Physics and Quantum Chemistry • Challenges to classical physics; special relativity • Lorentz transformation, transformation of	15 L
Chapter 4	waves Modern Physics and Quantum Chemistry • Challenges to classical physics; special relativity • Lorentz transformation, transformation of velocities, Doppler effect	15 L
Chapter 4	waves Modern Physics and Quantum Chemistry • Challenges to classical physics; special relativity • Lorentz transformation, transformation of velocities, Doppler effect • Relativistic momentum and energy	15 L
Chapter 4	waves Modern Physics and Quantum Chemistry Challenges to classical physics; special relativity Lorentz transformation, transformation of velocities, Doppler effect Relativistic momentum and energy Photons and the photoelectric effect Quantum physics, blackbody radiator, matter	15 L
Chapter 4	 Waves Modern Physics and Quantum Chemistry Challenges to classical physics; special relativity Lorentz transformation, transformation of velocities, Doppler effect Relativistic momentum and energy Photons and the photoelectric effect Quantum physics, blackbody radiator, matter waves Schrödinger's equation and Heisenberg's 	15 L
Chapter 4	Modern Physics and Quantum Chemistry Challenges to classical physics; special relativity Lorentz transformation, transformation of velocities, Doppler effect Relativistic momentum and energy Photons and the photoelectric effect Quantum physics, blackbody radiator, matter waves Schrödinger's equation and Heisenberg's Uncertainty Principle	15 L
Chapter 4	 Waves Modern Physics and Quantum Chemistry Challenges to classical physics; special relativity Lorentz transformation, transformation of velocities, Doppler effect Relativistic momentum and energy Photons and the photoelectric effect Quantum physics, blackbody radiator, matter waves Schrödinger's equation and Heisenberg's Uncertainty Principle Trapped particles and the tunneling particles Bohr and Schrodinger models of the hydrogen 	15 L
Chapter 4	 Modern Physics and Quantum Chemistry Challenges to classical physics; special relativity Lorentz transformation, transformation of velocities, Doppler effect Relativistic momentum and energy Photons and the photoelectric effect Quantum physics, blackbody radiator, matter waves Schrödinger's equation and Heisenberg's Uncertainty Principle Trapped particles and the tunneling particles Bohr and Schrodinger models of the hydrogen atom Complex atoms; Pauli Exclusion Principle, Periodic Table of Elements, selection rules 	15 L
Chapter 4	Modern Physics and Quantum Chemistry Challenges to classical physics; special relativity Lorentz transformation, transformation of velocities, Doppler effect Relativistic momentum and energy Photons and the photoelectric effect Quantum physics, blackbody radiator, matter waves Schrödinger's equation and Heisenberg's Uncertainty Principle Trapped particles and the tunneling particles Bohr and Schrodinger models of the hydrogen atom Complex atoms; Pauli Exclusion Principle, Periodic Table of Elements, selection rules and spectra Nuclear physics, nuclear properties, nuclear	15 L

References:

- Stereochemistry: Conformation and mechanism by P.S.Kalsi
- Organic chemistry by Jonathan clayden, nick greeves and stuart warren
- University General Chemistry, 1st edition (2000), C.N. R. Rao, Macmillan Publishers, India,
- Principles of Physical Chemistry, 4th edition (1965), S.H. Maron and C.F. Prutton, Collier Macmillan Ltd 3. The elements of Physical Chemistry, 5th edition (2009), Atkins P, de Paula J., W. H. Freeman Publication, USA
- An Introduction to Electrochemistry , edition reprint, 2011, Samuel Glasstone, BiblioBazaar, USA
- Physical Chemistry for biological sciences, 1st edition, (2005), Chang R., University Science Books, USA 6. Physical Chemistry, 1st edition, (2003) David Ball, Thoson Learning, USA.
- Essentials of Physical Chemistry, 24th edition, (2000), B S Bahl, G D Tuli, ArunBahl, S. Chand Limited, India.
- Concise Inorganic Chemistry . 5th edition (2008), Author: J. D. Lee, John Wiley & Sons, USA.
- Organic Chemistry, 6 th edition, (1992), Morrison Robert Thornton, Pearson Publication, Dorling Kindersley (India Pvt. Ltd.)
- Guide book to Mechanism in Organic chemistry
- organic Chemistry by Peter Sykes, 6th edition, (1996), Prentice Hall, India.

Progressive Education Society's

Modern College of Arts, Science and Commerce,
Shivajinagar, Pune - 5
FirstYear of B.Sc.Blended (Biosciences)
(2024 Course under NEP 2020)
(Semester II)

Course Code: 24ScBioU2202

Course Name: Lab Course on 24ScBioU2201

Teaching Scheme: TH: 4 Hours/Week Credit: 2P

Examination Scheme: CIA: 20 Marks End-Sem: 30 Marks

Prerequisite Courses: Knowledge of Basic chemistry from XI & XII Science.

Course Objectives:

- To study coordination chemistry of metal complexes
- To study electrochemistry of the reaction
- To study reduction reaction using reducing agents
- To expertize students in biochemical calculations

Course Outcomes:

On completion of the course, student will be able to-

- Study all basic fundamentals of chemistry
- Can extend their analytical thinking in research field.
- Develops practical hand

D	T'41 -	N C
Practicals	Title	No. of
		practicals
		12 P
Practical-1	Colorimetry	1 Practical
	• Determination of λ_{max} by colorimetric	
	method	
	 To determine λmax and concentration 	
	of a given solution of copper sulphate	
	ammonia complex by using colorimertry	
Practical-2		1 Practical
	Coordination complex synthesis	
	Synthesis of coordination complexes	
	To synthesize hexaammine nickel (II)	
	chloride	
Practical-3		1 Practical
Tructicul 3	Conductometry	1 1 Iucticui
	To perform conductometric titrations of	
	acids and bases	
Practical-4		1 Practical
	Potentiometric titrations	
	To perform potentiometric titrations	
Practical-5	Indicator constant by colorimetric method	1 practical
	To determine indicator constant of given	
	acid base solution using colorimetric	
	method	
Practical-6	Reduction of benzophenone	1 practical
	To synthesize diphenyl methanol from	
	benzophenone using NaBH ₄	
Practical-7	Synthesis of coordination compound	1 practical
	To synthesize hexaammine cobalt	•
L		

	(III)chloride	
Practical-8	Potentiometry	1 practical
	 To determine formal redox potential of ferrous/ferric system by using potentiometer 	
Practical-9	Determination of cell constant, energy of activation and temperature coefficient	1 practical
	 To determine the cell constant by using KCl solution To determine the temperature coefficient and activation energy of the reaction 	
Practical-10	Chemical calculations	1 practical
Practical-11	General introduction to practicals in chemistry	1 practical
Practical-12	Organic synthesis	1 practical

Progressive Education Society's

Modern College of Arts, Science and Commerce (Autonomous),
Shivajinagar, Pune - 5
First Year B. Sc. Blended (Biosciences)
(2024 Course under NEP 2020)

Semester II

Course Code: 23ScBLEU2301 Course Name: Introduction to Microbiology

Teaching Scheme: TH: 3 Hours/Week Credit:2 C (30 Lectures)

Examination Scheme: CIA:20 Marks End-Sem :30 Marks

Prerequisite Courses:

Basic knowledge of Biology (SSC grade and HSC grade) is required to understand the concepts of application and research in microbiology.

Course Outcomes:

After successful completion of this course students will be able to:

CO No.	Course Outcomes (Cos)	Blooms cognitive taxonomy
		level

CO 1	Recall the history of microorganisms and	1
	understand the procedure of isolation,	
	identification and control of microorganisms.	
CO 2	Understand various microorganisms, their	2
	habitat and their replication cycle.	
CO 3	Develop the biosafety measures in various labs	3
CO 4	Classify the microorganisms	4
CO 5	Compare bacterial and viral cell structure	5
CO 6	Create the media for microorganisms according	6
	to their requirements	

Chapter	Title	Lectures
		24 Lectures +
		6 Practicals
Chapter-1	History of Microbiology	7
	 Discovery of microscope II. 	3
	 Micrographia of Anton von 	
	Leeuwenhoek and Robert Hook	
	 Abiogenesis v/s biogenesis 	
	 Development of Microbiology in 19th 	1
	century: Germ theory of fermentation	
	Discovery of anaerobic life &	
	physiological significance of	
	fermentation	
	 Discovery of microbes as pathogens 	1
	 Developments in 20th and 21st 	2
	Centuries with respect to Vaccination	
	and Immunology, Molecular Biology	
	& Biotechnology	
Chapter-2	Morphological and differentiating characters of	6
	microorganisms:	U
	 Principles in classification of Bacteria 	
	(Introduction to Bergey's Manual of	
	Determinative and Systemic	
	Bacteriology) and viruses (ICTV)	

Chapter-3	Bacterial Cytology	3
	 Studies on structure, chemical composition and functions of: Cell wall Cell membrane Endospore Capsule Flagella Fimbriae and Pili Ribosomes Chromosomal & extra-chromosomal material 	
Chapter-4	Basic Techniques in Microbiology	8
	 Units of measurement. Modern SI units (Length, volume, Weight) 	1
	 Microscopy: Bright field microscopy: Structure, working of and ray diagram of a compound light microscope; Concepts of magnification, numerical aperture and resolving power. Types, ray diagram and functions of – condensers, eye-pieces and objectives Staining Techniques: 	2
	 Definitions of Stain; Types of stains (Basic and Acidic), Properties and role of Fixatives, Mordants, Decolorisers and Accentuators Principles of staining techniques for following: Monochrome staining and Negative (Relief) staining ii. Differential staining - Gram staining and Acid fast staining 	
	 Sterilization and Disinfection I. Physical Agents - Heat, Radiation, Filtration II. Chemical agents and their mode of action - Aldehydes, Halogens, Quaternary ammonium compounds, Phenol and phenolic compounds, Heavy metals, Alcohol, Dyes, Detergents and Ethylene oxide 	3

References:

- **15.** Madigan M.T., Martinko J.M. (2006). Brock's Biology of Microorganisms. 11th Edition. Pearson Education Inc.
- **16.** Michael J Pelczar, JR. E.C.S. Chan, Noel R. Krieg. (1993) Microbiology, 5th Edition, Tata MacGraw Hill Press.
- **17.** Prescott L.M., Harley J.P., and Klein D.A. (2005). Microbiology, 6th Edition. MacGraw Hill Companies Inc.
- **18.** Stanier R.Y., Adelberg E.A. and Ingraham J.L. (1987) General Microbiology, 5th Edition. Macmillan Press Ltd.
- **19.** Wilson K. and Walker J.M. (2005) Principles and Techniques of Biochemistry and Molecular Biology. 6th Edition. Cambridge University Press.

Progressive Education Society's Modern College of Arts, Science and Commerce (Autonomous), Shivajinagar, Pune - 5 First Year B. Sc. Blended (Biosciences) (2024 Course under NEP 2020)

Semester II

Course Code: 24ScBLEU2302

Course Name:Lab Course on 24ScBLEU2301

Teaching Scheme: PR: 4 Hours/Week Credit: 2 C (15 Practicals)

Examination Scheme: CIA: 20 Marks End-Sem: 30 Marks

Prerequisite Courses:

Basic knowledge of Biology (SSC grade and HSC grade) is required to understand the concepts of application and research in microbiology.

Course Outcomes:

After successful completion of this course students will be able to:

CO No.	Course Outcomes (Cos)	Blooms cognitive
		taxonomy level
CO 1	Relate the procedure of isolation, identification and	1
	control of microorganisms to real world application.	
CO 2	Understand various microorganisms, their habitat and	2
	their replication cycle.	

CO 3	Develop th	e biosafety measures in various labs 3	
CO 4	Classify the	Classify the microorganisms 4	
CO 5	Evaluate p	Evaluate prokaryotic cell structure 5	
CO 6	Create the	media for microorganisms according to their 6	
	requiremen	nts	
		Practicals	6
		 Introduction to microbiology laboratory instruments e.g. Incubator, Hot Air Oven, Autoclave, Colorimeter, pH Meter, Distillation Unit, Chemical Balance, Laminar air flow hood, Clinical Centrifuge 	1
		 Construction (mechanical and optical), working and care of bright field microscope 	1
		 Observation of microorganisms using staining techniques: a. Monochrome staining and b. Negative /Relief staining (Capsule staining) 	1
		 Cultivation of microorganisms: a. Preparation of simple laboratory nutrient media (solid and liquid) and using them to cultivate bacteria. b. Observation of the growth of cultures and reporting of colony and cultural characteristics 	1
		 Aseptic transfer techniques (slant to slant, broth to broth, broth to agar and Agar to Agar) 	2

First Year of B.Sc. Blended (2024 Course under NEP 2020)

(Semester II)

Course Code: 24ScBLEU2291 Course name: Algebra

Credits 4T

Examination Scheme: CIA: 40 Marks End-Sem: 60 Marks

Prerequisite:

Course Objectives: To learn,

• Analysis

- Complex numbers
- Vectors

• Basic Linear Algebra

Mathematics		
Chapter 1	Analysis	15 lectures
	 Limits of real-valued functions, Proving limits using the definition Continuity & differentiability Examples of differentiable and non-differentiable functions; continuity and differentiability of standard functions including polynomials, trigonometric, exponential, log functions and their inverses Techniques for evaluating limits including L'Hopital's rule, sandwich theorem Mean Value Theorem and applications Applications of differential calculus eg related rates 	
Tutorials		5
Chapter 2	Complex numbers	6 lectures

	 Review of complex numbers including algebra, Argand plane, cartesian and polar form Complex exponential Fundamental Theorem of Algebra de Moivre's theorem; roots of complex numbers 	
Tutorials		1 lecture
Chapter 3	Vectors	7 lectures
	 Vector arithmetic, dot product, vector projections (review) Vector cross product; scalar triple product; parametric curves specified by vector equations Lines and planes in R^3 Lines and planes in R^3 	
Tutorials		1 lecture
Chapter 4	Linear Algebra 1Solving systems of linear	20 lectures
	equations with Gaussian elimination Solutions of systems of linear equations - consistency, uniqueness Geometric interpretation of solutions Matrices, matrix addition, multiplication, transpose and properties (review) Matrix inverse Determinant R^n as a vector space, linear independence of vectors in R^n Span of a set of vectors, subspaces of R^n Basis and dimension in R^n Abstract vector space axioms; examples and non-examples of vector spaces Bases, dimension and co- ordinates in (finite dimensonal)	

	abstract vector spaces Definition of linear transformation and examples/non-examples Linear transformations of the plane Matrix representation of a linear transformation Image and kernel of a linear transformation Rank and nullity	
Tutorials		5 lectures

Progressive Education Society's

Modern College of Arts, Science and Commerce,
Shivajinagar, Pune - 5

First Year of B.Sc. Blended (Biosciences)
(2024 Course under NEP 2020)

Semester II

Course Code: 24ScBLEU2292 Course Name: Modern Physics

Teaching Scheme: TH: 2 Hours/Week Credit: 2C (48 L)

Examination Scheme: CIA: 20 Marks End-Sem: 30 Marks

Prerequisite Courses: Kinematics, equation of motion, elasticity, waves and oscillations, fluid mechanics, geometrical optics

Course Objectives:

• Students will be given the basic information of electricity, magnetism and quantum mechanics

Course Outcomes:

On completion of the course, student will be able to-

• Apply the basic knowledge of classical mechanics in day to day life

Chapter	Title	Lectures
Chapter-1	Electricity and magnetism	18 Lectures
Chapter-1	 Electric charge ,conductors and insulators Coulomb's Law, superposition principle Electric field, superposition principle Electric flux Gauss's law, applications Energy and electric field; electric potential Calculating potential from the field, electric potential,potential energy surfaces. Electric dipoles Capacitance; parallel plate capacitors Energy storage in capacitors, dielectrics, series and parallel circuits Conductors, electric current, electric power, Ohm's law Kirchoff's rules, resistors in series and parallel circuits Magnetic field, magnetic force, Lorentz force, cyclotrons Lorentz force, ion velocity filter, Hall effect, Biot-Savart Law Bio-Savart Law, Ampere's Law, solenoids, earth's magnetic field Magnetic field due to a current, forces on current-carrying wires, Electromagnetic induction, magnetic flux Lenz' Law, Faraday's law, Maxwell's equations, application Magnetic materials 	To Executes
Chapter-2	Oscillations and Waves	6 Lectures
	 Simple harmonic motion, pendulum, diatomic molecules Damped harmonic motion, resonance - electronic circuits, evolution of populations One dimensional waves, Interference and standing waves, Sound waves and the speed of sound, Intensity, sound level and the physics of music Doppler effect and supersonic motion, shock waves 	
Chapter-3	Optics	10 Lectures

	 Images and mirrors Thin lenses and optical instruments 	
	 Young's experiment, interference Thin films and the Michaelson interferometer 	
	Diffraction by slits and aperturesDiffraction by gratings and X-ray	
	diffractionOptical MicroscopySpectroscopy	
Chapter-4	Modern Physics	14Lectures
	 Challenges to classical physics Lorentz transformation, transformation of velocities, Doppler effect Relativistic momentum and energy Photons and the photoelectric effect Quantum physics, blackbody radiator, matter waves Schrödinger's equation and Heisenberg's Uncertainty Principle Trapped particles and the tunneling particles Bohr and Schrodinger models of the hydrogen atom Complex atoms; Pauli Exclusion Principle Nuclear physics, nuclear properties, nuclear decay Nuclear fission and fusion Quarks, Leptons, The Big Bang 	

Progressive Education Society's

Modern College of Arts, Science and Commerce,
Shivajinagar, Pune - 5

First Year of B.Sc.Blended (Biosciences)
(2024 Course under NEP 2020)
(Semester II)

Course Code: 24ScBLEU2293 Course Name: Lab Course Based on 24ScBLEU2292

Teaching Scheme: TH: 4 Hours/Week Credit: 2P

Examination Scheme: CIA: 20 Marks End-Sem: 30 Marks

Prerequisite Courses: Knowledge of Basic physics from XI & XII Science, First Semester.

Course Objectives:

• Students will be given the basic information of electricity, magnetism, Oscillations & Waves, Optics.

Course Outcomes:

On completion of the course, student will be able to-

 Apply the basic knowledge of classical mechanics&Modern physics in day to day life

Practicals	Title	No. of Practicals 12P
Practical-1	Digital multimeter	1 Practical
Practical-2	Use of Oscilloscope	1 practical
Practical-3	Kirchhoff's laws	1 practical
Practical-4	Zener diode	1 preatical
Practical-5	Rectifiers	1 practical
Practical-6	Transistor Characteristics	1 practical
Practical-7	Calibration of spectrometer	1 practical
Practical-8	Franck-Hertz experiment	1 practical
Practical-9	Characteristics of Diode	1 practical
Practical-10	Coupled Oscillator	1 practical
Practical-11	Dispersive Power	1 practical
Practical-12	Double Refracting Prism	1 practical