Progressive Education Society's Modern College of Arts, Science and Commerce, Shivajinagar, Pune 5

Detailed Syllabus

For M. Sc. Botany

(2019-20 Course)

(with effect from 2019-20)

Course Type	Course Code	Course / Paper Title	Hours / Week	Credit	CIA	End Sem Exam	Total
CCT-1	19ScBotP101	Cryptogamic Botany I Algae (1.25 Credits) Fungi (1.25 Credits) Lichens (0.5 Credits)	4	4	50	50	100
CCT-2	19ScBotP102	Cell Biology and Evolution Cell Biology (3 Credits) Evolution (1 Credit)	4	4			
DSET-1	19ScBotP103	Plant Metabolism	4	4			
DSET-1	19ScBotP104	Botanical Techniques	4	4			
CCP-1	19ScBotP105	Practical based on 19ScBotP101	4	4			
CCP-2	19ScBotP106	Practical based on 19ScBotP102	4	4			
		Total		20			

Semester I (Part 1)

Semester II (Part 1)

Course Type	Course Code	Course / Paper Title	Hours / Week	Credit	CIA	End Sem Exam	Total
CCT-1	19ScBotP201	Cryptogamic Botany II Pteridophytes Gymnosperms Paleobotany	4	4	50	50	100
CCT-2	19ScBotP202	Biochemistry	4	4			
DSET-1	19ScBotP203	Genetics and Plant Breeding Genetics Plant Breeding	4	4			
DSET-1	19ScBotP204	Molecular Biology	4	4			
CCP-1	19ScBotP205	Practical based on 19ScBotP201	4	4			
CCP-2	19ScBotP206	Practical based on 19ScBotP202	4	4			
		Total		20			

Field visit for 19ScBotP201 and submission of 5 forms each of Pteridophytes and Gymnopserms.

Course Code: 19ScBotP101 Course Name: Cryptogamic Botany I-Algae, Fungi, Lichens and Bryophytes

Teaching Scheme: TH – 4 hrs/week Examination Scheme: CIA: 50 Marks No. of credits: 2 End-Sem: 50 Marks

Prerequisite Courses:

• Student should have basic knowledge of Algae, Fungi and lichens

Course Objectives:

- To study general characteristics of each group
- To learn evolutionary relationship among taxa within each group
- To gain expertise in the field work

Course Outcome:

On completion of the course, student will be able to-

• Identify and classify lower cryptogams

Chapter 1	Systematics and taxonomy of algae	2Lectures
	1.1 Concept of algal systematics	
	1.2 Position of algae and fungi in five Kingdom	
	System	
	1.3 Economic importance of algae	
	1.4 Algal biofertilizers	
	1.5 Mass cultivation of sea weeds	
Chapter 2	Classification of Algae	4Lectures
	2.1 Outline of classification of algae	
	2.2 Role of pigment constitution and reserve food in	
	algae	
Chapter 3	Recent studies in phycology	3Lectures

	 3.1 Recent algological studies in India. 3.2 Modes of perennation in algae. 3.3 Origin and evolution of sex and thallus in the algae 3.4 Fossil algae 	
Chapter 4	Cyanophyta (Blue Green Algae)	3Lectures
	 4.1 Distinguishing characters. 4.2 Thallus organization, cell structure, heterocyst and its significance. 4.3 Structure and reproduction in Chrococcales, Nostocales, and Stigonematales. 	
Chapter 5	Chlorophyta (Green Algae)	3Lectures
	 5.1 Distinguishing characters. 5.2 Origin of green algae 5.3 Range of thallus organization in Chlorophyta 5.4 Reproduction – asexual and sexual, Life cycle pattern in unicellular, filamentous and multicellular green algae. 	
Chapter 6	Charophyta	3Lectures
	6.1 Distinguishing characters, comparative study of thallus structure in <i>Chara</i> and <i>Nitella</i>6.2 Reproduction and Life cycle pattern	
Chapter 7	Phaeophyta (Brown algae)	3Lectures
	7.1 Distinguishing characters.7.2 Comparative study of thallus morphology, anatomical peculiarities, reproduction and life cycle patterns.	
Chapter 8	Rhodoophyta:(Red algae)	3Lectures
	 8.1 Distinguishing characters. 8.2 Comparative study of thallus morphology, anatomical peculiarities, reproduction and life cycle patterns. 	
Chapter 9	Diatoms	2Lectures
	9.1 Xanthophyta9.2 Bacillariophyta9.3 Chrysophyta	
Chapter 10	Lichens	4Lectures
	 10.1 History of Lichenology 10.2 Types and classification of lichens, nature of association 10.3 Morphology and anatomy of lichen thallus, reproduction 	

	10.4 Economical and ecological importance	
Chapter 11	Fungi	4Lectures
	 11.1 Outline of classification of fungi 11.2 Recent studies of fungi in India 11.3 Distinguishing characters 11.4 Thallus: unicellular and multicellular filamentous, nutrition, cell structure, hyphal modifications in fungi, phylogeny of fungi 11.5 Economic importance 	
Chapter 12	Myxomycotina and Mastigomycotina	3Lectures
	 12.1 Myxomycotina: Distinguishing characters, comparative study of structure of thallus and reproductive bodies, life cycle pattern 12.2 Mastigomycotina: Distinguishing characters, comparative study and Evolution of thallus structure and reproduction (asexual and sexual), Life cycle pattern in Chytridiomycetes and Oomycetes 	
Chapter 13	Zygomycotina	2Lectures
	 13.1 Zygomycotina - Distinguishing characters, thallus structure, heterothallism and sexual reproduction 13.2 Evolution of asexual reproduction 13.3 Life cycle pattern 	
Chapter 14	Ascomycotina	3Lectures
	 14.1 Distinguishing characters. 14.2 Comparative study of thallus structure, evolution of sexuality, 14.3 Concept of hamathecium and centrum, fructifications. 14.4 Life cycle pattern in Hemiascomycetes and Euascomycetes 	
Chapter 15	Basidiomycotina	3 Lectures
	 15.1 Distinguishing characters. 15.2 Thallus structure, types and structure of basidia and basidiocarps. 15.3 life cycle pattern in Teliomycetes, Hymenomycetes and Gasteromycetes 	
Chapter 16	Deuteromycotina	2Lectures
	16.1 Distinguishing characters16.2 Thallus structure, fructifications, types of conidia, conidial ontogeny16.3 Life cycle patterns	

Chapter 18	Bryophytes	2Lectures
	17.1 Outline of Classification of Bryophyte.17.2 Contributions of any three Bryologists from India	
Chapter 19	Hepaticopsida	3Lectures
	 19.1 Distribution 19.2 Distinguishing Characters 19.3 Morphology and anatomy of gametophyte and sporophytes of liverworts, Takaiales, Jungermanniales, Marchantiales, Sphaerocarpales 	
Chapter 20	Anthocerotopsida	3Lectures
	 20.1 Distribution. 20.2 Distinguishing Characters 20.3 Morphology and anatomy of gametophyte and sporophyte in Anthocerotales, Biological importance of <i>Anthoceros</i> sporophyte 	
Chapter 21	Bryopsida/Musci	4Lectures
	 21.1 Distribution 21.2 Distinguishing Characters 21.3 Morphology and anatomy of gametophyte and sporophytes of Sphangnales, Funariales, Polytrichales, Eubryales. 	
Chapter 22	Discussion/guidance of experiential learning through field work	1Lectures

- 1. **Brodie J. and Lewis J. (2007).** (Ed.) Unravelling the algae: the past, present and future of algal systematics. CRC press, New York,
- 2. Bellinger E.G. and Sigee D.C. (2010). Freshwater algae: Identification and use asbioindicators, Willey-Blackwell, UK.
- 3. Cole K.M. and Sheath R.G. (1990). Biology of the red algae. Cambridge UniversityPress.USA.
- 4. Desikachary T.V. (1959). Cyanophyta. ICAR, New Delhi.
- 5. Graham L.E. and Wilcox L.W. (2000). Algae. Penticce-Hall, Inc,
- Krishnamurthy V. (2000). Algae of India and neighboring countries I. Chlorophycota,Oxford& IBH, New Delhi.
- 7. **Dube H.C. (2004).** An Introduction to fungi. Vikas Publishers.
- 8. Misra J.N. (1996). Phaeophyceae in India. ICAR, New Delhi.

- 9. Smith G.M. (1950). The fresh water algae of the United States, Mc-graw Hill New York.
- 10. Srinivasan K.S. (1969). Phycologia India. Vol. I & II, BSI, Calcutta.
- 11. Sharma O.P. (2010). A text book of fungi. S.Chand's Publication.
- 12. Chapman V.J and Chapman D.J (1973). Thje Algae Macmillon and company, New York.
- 13. Ainsworth, Sussman and Sparrow (1973). The fungi. Vol IV A & IV B. AcademicPress.
- 14. Alexopolous C.J., Minms C.W. and Blackwell M. (1999). (4th edn) IntroductoryMycology. Willey, New York, Alford R.A.
- 15. Deacon J.W. (2006). Fungal Biology (4th Ed.) Blackwell Publishing, ISBN. 1405130660.
- 16. **Kendrick B.** (1994). The fifth kingdom (paperback), North America, New YorkPublisher: 3rd edn, ISBN- 10: 1585100226.
- 17. Kirk et al. (2001). Dictionary of fungi, 9th edn, Wallingford: CABI, ISBN: 085199377X.
- 18. Mehrotra R.S. and Aneja K.R. (1990). An introduction to mycology. New AgePublishers, ISBN 8122400892.
- 19. Webster J. and Rpland W. (2007). Introduction to fungi (3rd Edn) Cambridge UniversityPress, 978-0-521-80739-5.

Course Code: 19ScBotP102 Course Name: Cell Biology and Evolution

Teaching Scheme: TH – 4 hrs/week Examination Scheme: CIA: 50 Marks

No. of credits: 2 End-Sem: 50 Marks

Prerequisite Courses:

• A student should know basic concept of cell.

Course Objectives:

- To study ultrastructure of cell organelles and functions
- To learn basic metabolism of cell
- To understand advanced trends of cell biology

Course Outcome:

On completion of the course, student will be able to

- understand the structure and functions of cell organelles
- understand the metabolism of cell organelles
- Grasp the current trends in cell Biology

Chapter 1	Cell Wall	3Lecture
	1.1 Biogenesis, ultra-structure and functions1.2 Growth- primary and secondary cell wall.	
Chapter 2	Cell membranes	4 Lecture
	 2.1 Molecular organization, fluid mosaic model, membrane protein diffusion 2.2 Electrical properties of membranes transport across membranes, facilitated diffusion, carrier and channel proteins, transporters, active transport, transport of ions and solutes 	
Chapter 3	Cell Organelles-I	8Lecture
	 3.1 Endoplasmic reticulum: Ultra structure of ER, Role in synthesis and transport of secretary proteins 3.2 Golgi complex: Ultra structure of golgi complex, Role in sorting, storage and secretion 	

	3.3 Lysosomes: Ultra structure of lysosomes, membrane	
	integrity and role	
	3.4 Glyoxysomes and Peroxisomes: Structure and functions	
	Ultra structure of Chloroplast and Mitochondria. Molecular	
	organization and biogenesis of chloroplast and	
	mitochondrial membrane	
Chapter 4	Cell organelles-II	7 Lecture
	4.1 Nucleus: Structure, Organization and regulation of nuclear	
	pore complex, Transport across nuclear membrane	
	4.2 Ribosome: Structure, assembly and dissociation of subunits,	
	function	
	4.3 Vacuoles: biogenesis, transporters, Mechanism of sorting	
	and regulation of intracellular transport, Role as storage	
	organelle, Transport across vacuolar membrane	
Chapter 5	Cytoskeleton and Signal Transduction	8 Lecture
	5.1 Cytoskeleton: Composition and organization of	
	microtubules, microfilaments, signaling and intracellular	
	traffic, Role in motility, flagella- Structure and	
	organization, Intermediate filaments.	
	5.2 Plasmodesmata: Structure and role in movement of	
	molecules, virus transport	
	5.3 Signal Transduction: Types of receptors, G-proteins and	
	G-protein coupled receptors	
	5.4 Signaling mechanisms: Phospholipid signaling, Ca^{2+} ,	
	Calmodulin cascade, Diversity in protein kinases and	
	phosphatases, secondary messengers, regulation of	
	signaling pathways Specific signaling mechanisms with	
	suitable examples- Biotic and abiotic stress, ABA induced stomatal closure, Stomatal guard cell signaling	
	5.4.1 Nuclear- organelle signaling during plastid	
	development	
	5.4.2Receptor Serine/ Threonine kinase, Ethylene mediated	
	two component system	
Chapter 6	Cell Cycle	8 Lecture
	6.1 Phases of cell cycle, functional importance of each phase,	5 Letture
	Molecular events during cell cycle,	
	6.2 Regulation of cell cycle, Cyclins and protein kinases, MPF	
	(Maturation promoting factor),	
	6.3 Methods to study cell cycle- labeled mitotic curve, flow	
	cytometry, use of mutants.	
Chapter 7	Cell aging and cell senescence	7 Lecture
	7.1 Programmed cell death:molecular aspects, regulation of cell	
	death, PCD in response to stress	
	7.2 Apoptosis: Role of different genes, cell organelles during	
	apoptosis, genetic control of apoptosis	
Chapter 8	Origin of Life	3 Lecture
	8.1 Emergence of evolutionary thought: Steps and preview of	e Ecclure

	evolution, Lamarkism	
	8.2 Darwinism- concepts of variation, adaption, struggle for	
	fitness and natural selection; Neuo Darwinism, Spontaneity	
	of mutations	
	8.3 The evolutionary synthesis	
Chapter 9	Theories of Evolution	4 Lecture
	9.1 Origin of cells and unicellular evolution: Origin of basic	Lecture
	biological molecules, abiotic synthesis of organic	
	monomers and polymers	
	9.2 Concepts of Oparin and Halden, Miller Experiment (1953),	
	The first cell, evolution of prokaryote, origin of eukaryotic	
	cells, evolution of unicellular eukaryotes, anaerobic	
	metabolism	
	9.3 Photosynthesis and aerobic metabolism, RNA world theory	
Chapter 10	Molecular Evolution	3Lecture
•		
	10.1 Concepts of natural evolution, molecular clocks, molecular	
	tools in phylogeny	
	10.2 Protein and nucleotide sequence analysis, origin of new	
	genes and proteins, gene duplication and divergence	
Chapter 11	The mechanism of evolution	4 Lecture
	11.1Population genetics: Types of population's gene pool, gene	
	frequency,	
	11.2 Hardy-Weinberg law, Concepts natural selection, Changes	
1		
	in gene frequency through, migration and random genetic	
	in gene frequency through, migration and random genetic drift. Adaptive radiation and modification, isolation	
	in gene frequency through, migration and random genetic drift. Adaptive radiation and modification, isolation mechanism. Speciation-allopatric sympatric, and	
	in gene frequency through, migration and random genetic drift. Adaptive radiation and modification, isolation mechanism. Speciation-allopatric sympatric, and parapetric, convergent evolution and co-evolution	
Chapter 12	in gene frequency through, migration and random genetic drift. Adaptive radiation and modification, isolation mechanism. Speciation-allopatric sympatric, and	1 Lecture

- 1. Alberts B., Bray D., Lewis J., Raff M., Roberts K., Watson J.D. (1989). Molecular Biology of the Cell. 2nd Edn. Garlan Publ. Inc. New York.
- 2. Karp G. (1999). Cell and Molecular Biology- Concept and Expts. John Wiley and ScneIne., USA.
- 3. Lodish S., Baltimore B., Bek C., Lawrence K. (1995). Molecular Cell Biology. 3 rdEdn. Scientific American Books, New York.
- 4. **De Robertis, De Robertis (1988).** Cell and Molecular Biology, 8th Edn. Info-Med, Hongkong.
- 5. Buchanan, Grissem and Jones (2000). Biochemistry and Molecular Biology of Plants. American Soc. Plant Biologists, Waldorf.
- 6. Lewin B. (2000). Gene VII. Oxford University Pres. New York, USA.
- 7. **De Robertis and De Robertis** (2005). (8th edition) (Indian) Cell and Molecular Biology, Lippincott Williams, Philadelphia. [B.I Publications Pvt. Ltd. New Delhi].
- 8. David S. (2004) (1st Indian Edition). Cell Biology, New Delhi.

- 9. Albert et al (2002). (4th Edn). Molecular Biology of the cell, Garland Science (Taylar and Francis) New York Group (wt)
- 10. Lodish et al (2004). 5th Edn). Molecular Cell Biology, W H Freeman and company, New York.
- 11. Arthur G (1979) (5th Edn). Cell Physiology, Toppan company Ltd., Tokyo, Japan.
- 12. Cooper G.M and Hausman R.E. (2007) (4th Edn). The Cell molecular approach Sinauer associate, Inc, Suderland (USA).
- 13. Powar C.B. (2005) (3rd Edn). Cell Biology, Himalaya Publishing, Mumbai.
- 14. **Roy S.C and De K.K.** (2005). (2ndEdition). Cell Biology, New central Book Agency Private Ltd., Kolkata.
- 15. **Verma P.S and Agarwal V.K.** (2006) Cell Biology, Genetics, Molecular Biology, Evolution, Ecology. S.Chand and Company, New Delhi.

Course Code: 19ScBotP103 Course Name: Plant Metabiolism

Teaching Scheme: TH – 4 hrs/week

No. of credits: 2

Examination Scheme: CIA: 50 Marks

End-Sem: 50 Marks

Prerequisite:

• A student should have a basic knowledge of Plant Physiology.

Course Objectives:

- To understand the interaction between the environment and plant growth
- To study the metabolic and physiological processes in plants

Course Outcome:

On completion of the course, student will be able to-

- understandinterrelationship between plant metabolism and development
- understand several major areas of active investigation in contemporary plant biology

Chapter 1	Introduction to metabolism and energy	3 Lectures
	1.1 The flow of energy in living system	
	1.2 The laws of thermodynamics and	
	concepts of free energy	
	1.3 ATP: The energy currency of cell.	
	1.4 The natures of metabolism	
Chapter 2	Solute transport	3Lectures
	2.1Transport of ions across membranes	
	2.2 Membrane transport processes and	
	proteins	
	2.3 Ion transport in roots	
Chapter 3	Photosynthesis	9 Lectures

Charton 4	 3.1 Chloroplast and photosynthetic pigments system 3.2 Concept of photosynthetic unit 3.3 Hill reaction 3.4 Oxygenic and anoxygenic photosynthesis 3.5 Stages of photosynthesis 3.6 Photorespiration 3.7 C₃ and C₄pathways 3.8 CAM pathway 	21 actumes
Chapter 4	Sensory photobiology4.1 Plant responses to light and gravity,	3Lectures
	 4.1 Frank responses to light and gravity, mechanical stimuli, water and temperature. 4.2 Role of PGRsinsensory system. 	
Chapter 5	Plant water relations	4Lectures
	 5.1 Soil water and its absorption by roots 5.2 Transport of water 5.3 Water movement from the leaves to the atmosphere 5.4 An overview of the soil–plant– atmosphere continuum 	
Chapter 6	Respiration	8Lctures
	 6.1Glycolysis 6.2 Fermentation 6.3 Aerobic respiration 6.4 Shuttle system 6.5 Electron transport chain and oxidative phosphorylation 6.6 Respiratory quotient and respiratory substrate 6.7 Glyoxylate cycle 6.8 Pentose phosphate pathway 	
Chapter 7	Stress physiology	5Lectures
	 7.1 Response of plant to biotic (pathogen and insects) and abiotic (water, temperature and salt) stresses 7.2 Mechanism of resistance to biotic stress and tolerance to abiotic stress 7.3 Physiological process affected by drought 7.4 Mechanism of drought tolerance 	
Chapter 8	Plant growth regulators	7Lectures
	8.1Classification8.2 Site of synthesis8.3 Biosynthetic pathways of PGRs and	

	their metabolism	
	8.4 Influence of auxins, gibberellins,	
	cytokinins, ethylene and abscisic acid	
	on plant growth and development	
	8.5 Introduction to Brassinosteroids,	
	Triacontanol, Phenols Polyamines,	
	and Jasmonates	
	8.6 Concept of death hormone	
Chapter 9	Seed germination flowering & fruit	3Lectures
	ripening	
	9.1 Metabolic changes during seed	
	germination	
	9.2 Seed viability and seed dormancy	
	9.3 Means to overcome seed dormancy	
	9.4 Initiation of flowering	
	Secondary metabolites and plant	4Lectures
Chapter 10	defense	
_	10.1 Secondary metabolites-structure and	
	synthesis	
	10.2Induced plant defenses against insect	
	and herbivores	
	10.3Plant defenses against pathogens	
Chanton 11		4 Lectures
Chapter 11	Post-harvesttechnology of fruits	4 Lectures
	11.1 Physiological changes during	
	ripening	
	11.2Artificial v/s natural ripening of fruits	
	11.3Fruit preservation	
	11 (Dolo of other long in post horizont	
	11.4Role of ethylene in post-harvest	
	technology	
	• 1	
	technology 11.5Cold chain	
Chapter 12	technology 11.5Cold chain 11.6Centralised packing operations	5Lectures
Chapter 12	technology 11.5Cold chain	5Lectures
Chapter 12	technology 11.5Cold chain 11.6Centralised packing operations Equipmentused in plant metabolism study	5Lectures
Chapter 12	technology 11.5Cold chain 11.6Centralised packing operations Equipmentused in plant metabolism study Working and Principle of:	5Lectures
Chapter 12	technology 11.5Cold chain 11.6Centralised packing operations Equipmentused in plant metabolism study Working and Principle of: 12.1Grain moisture meter (Capacitance	5Lectures
Chapter 12	technology 11.5Cold chain 11.6Centralised packing operations Equipmentused in plant metabolism study Working and Principle of: 12.1Grain moisture meter (Capacitance meter)	5Lectures
Chapter 12	technology 11.5Cold chain 11.6Centralised packing operations Equipmentused in plant metabolism study Working and Principle of: 12.1Grain moisture meter (Capacitance meter) 12.2Turbidity meter (PAR meter)	5Lectures
Chapter 12	technology 11.5Cold chain 11.6Centralised packing operations Equipmentused in plant metabolism study Working and Principle of: 12.1Grain moisture meter (Capacitance meter) 12.2Turbidity meter (PAR meter) 12.3Chlorophyll fluorometer	5Lectures
Chapter 12	technology 11.5Cold chain 11.6Centralised packing operations Equipmentused in plant metabolism study Working and Principle of: 12.1Grain moisture meter (Capacitance meter) 12.2Turbidity meter (PAR meter) 12.3Chlorophyll fluorometer 12.4Lux meter	5Lectures
Chapter 12	technology 11.5Cold chain 11.6Centralised packing operations Equipmentused in plant metabolism study Working and Principle of: 12.1Grain moisture meter (Capacitance meter) 12.2Turbidity meter (PAR meter) 12.3Chlorophyll fluorometer 12.4Lux meter 12.5Infrared pyrometer	5Lectures
Chapter 12	technology 11.5Cold chain 11.6Centralised packing operations Equipmentused in plant metabolism study Working and Principle of: 12.1Grain moisture meter (Capacitance meter) 12.2Turbidity meter (PAR meter) 12.3Chlorophyll fluorometer 12.4Lux meter 12.5Infrared pyrometer 12.6Infrared gas analyzer (IRGA)	5Lectures
Chapter 12	technology 11.5Cold chain 11.6Centralised packing operations Equipmentused in plant metabolism study Working and Principle of: 12.1Grain moisture meter (Capacitance meter) 12.2Turbidity meter (PAR meter) 12.3Chlorophyll fluorometer 12.4Lux meter 12.5Infrared pyrometer 12.6Infrared gas analyzer (IRGA) 12.7Leaf area meter	5Lectures
	technology 11.5Cold chain 11.6Centralised packing operations Equipmentused in plant metabolism study Working and Principle of: 12.1Grain moisture meter (Capacitance meter) 12.2Turbidity meter (PAR meter) 12.3Chlorophyll fluorometer 12.4Lux meter 12.4Lux meter 12.5Infrared pyrometer 12.6Infrared gas analyzer (IRGA) 12.7Leaf area meter 12.8Portable pigment analyzer	
Chapter 12 Chapter 13	technology 11.5Cold chain 11.6Centralised packing operations Equipmentused in plant metabolism study Working and Principle of: 12.1Grain moisture meter (Capacitance meter) 12.2Turbidity meter (PAR meter) 12.3Chlorophyll fluorometer 12.4Lux meter 12.5Infrared pyrometer 12.6Infrared gas analyzer (IRGA) 12.7Leaf area meter	5Lectures 2 Lectures

- 1. Noble P.S. (2009). Physicochemical and Environmental Plant Physiology, 4rth edition, Academic Press, San Diego, USA
- 2. Salisbury F.B. and Ross C.W. (2009). Plant Physiology, 4^{rth} edition, Australia Cengage Learning.
- Taiz L and Zeiger E (2014). Plant Physiology, 6th edition, Sinauer Associates, Inc. Publishes, Massachusetts, USA.
- 4. Verma S.K. and Verma Mohit (2007). ATextbook of Plant Physiology, Biochemistry and Biotechnology, S. Chand Publications.

Course Code: 19ScBotP104 Course Name: Botanical Techniques

Teaching Scheme: TH – 4 hrs/week Examination Scheme: CIA: 50 Marks No. of credits: 2 End-Sem: 50 Marks

Prerequisite Courses:

• A student should have basic knowledge of equipment's

Course Objectives:

• To study principles and application of equipment's used in life science

Course Outcome:

On completion of the course, student will be able to:

• Know the principles and application of equipment's

Chapter 1	Microscopy	8Lecture
	 1.1 Image formation (properties of light), Lens- refraction, dispersion of light, objects, images, image quality, magnification concept, resolution 1.2 Light microscopy, Confocal microscopy, Phase Contrast microscopy, Fluorescence microscopy, Electron microscopy (SEM and TEM), Flow cytometry 	
Chapter 2	Microtomy, Histochemical and Cytochemical techniques	7 Lecture
	 2.1 Dissection, maceration, squash, peeling and whole mount-pretreatment andprocedures 2.2 Serial sectioning, double or multiple staining, Lesser assisted Microtomy 2.3 Localization of specific Compounds/reactions/ activities in tissues and cells 	
Chapter 3	Chromatography techniques	8 Lecture
	 3.1 Introduction, concept of partition coefficient, Paper, TLC, Column, Gel filtration 3.2 Affinity, Ion exchange, HPLC 3.3 Gas chromatography (Principle, method and applications of each) 	
Chapter 4	Electrophoretic techniques	7 Lecture

	 4.1 History, Principles, Agarose gel electrophoresis, Pulsed Field Gel Electrophoresis, Polyacrylamide Gel Electrophoresis (PAGE/ Native) 4.2 Sodium Dodecyl Sulphate polyacrylamide gel electrophoresis (SDS-PAGE/ Denaturing), 4.3 Isoelectric focusing, 2Dimensional Gel Electrophoresis (2-D method) 	
Chapter 5	Spectroscopic techniques	9 Lecture
	 5.1 General principles, Beer and Lambert's Law, Molar extinction coefficient, Spectrophotometer (working and application) 5.2 UV-Visible spectroscopy, Nuclear Magnetic 5.3 Resonance (NMR) spectroscopy, 5.4 X-ray crystallography, Spectro-flurometry 5.5AAS, MS, IR Spectroscopy 	
Chapter 6	Radioactive techniques	6 Lecture
	 6.1 Radioisotopes used in biology and their properties 6.2 Units of radioactivity, Interaction of radioactivity with matter, 6.3Detection and measurement of radioactivity, Autoradiography 6.4Safe handling of radio isotopes, Non-Radio labeled techniques 	
Chapter 7	Centrifugation techniques	4 Lecture
	 7.1 Principles, Rotors, Factors affecting centrifugation, Ultra- centrifugation, 7.2 Density Gradient Centrifugation, High speed centrifuges 	Thecture
Chapter 8	Electrochemical techniques	3 Lecture
	8.1Electrical conductivity8.2pH meter,8.3Oxygen electrode	
Chapter 9	Immunological techniques	4 Lecture
	 9.1 Principles, Antigen–antibody interaction, 9.2 Immuno diffusion, Immuno precipitation, 9.3Radio-immuno assay, Rocket immumo-electrophoresis, ELISA 	
Chapter 10	Molecular biology techniques	4 Lecture
	 10.1 DNA sequencing techniques- Sanger's method, 10.2 Maxam- Gilbert's mehod, Automated DNA sequences, Pyrosequencing, 10.3 Sequencing of proteins, PCR, 10.4 DNA microarray 	

- 1. **P. Gunadegaram**(1995). Laboratory Manual in Microbiology. New AgeInternational (P) Ltd.
- 2. Srivistava M.L. (2008). Bioanylatical Techniques. Narosa Publishing House (P)Ltd.
- 3. **Gamborg O.L., Philips G.C.** (Eds.) (1995). Plant Cell, Tissue and Organ Cultureundamental Methods. Narosa Publishing House (P) Ltd.
- 4. Krishnamurthy K.V. (1999). Methods in Cell Wall Cytochemistry. CRC Press.LLC.
- 5. **Plummer David** (1987). An Introduction to Practical Biochemistry. 3rd Eds. TataMcGraw-Hill Publishing Company Ltd.
- 6. Sadasivam S., Manickam A. (1996). Biochemical Methods. 2nd Edn. New AgeInternational (P) Ltd.
- 7. **Khasim S.M.** (2002). Botanical Micro techniques: Principles and Practice. CapitalPublishing Company.
- 8. Harborne J.B. (1998). Phytochemical Methods. Springer (I) Pvt. Ltd.
- 9. Wilson K., Walker J. (2005). Principles and Techniques in Biochemistry and Molecular Biology. Cambridge University Press.
- 10. **Wilson K., Walker J.** (2000). Practical Biochemistry Principles and Techniques.Cambridge University Press.
- 11. **Egerton R.F.** Physical Principle of Electron Microscopy: an Introduction to TEM, SEM and AEM.
- 12. Bisen P.S. Mathur S. (2006). Life Science in Tools and Techniques. CBSPublishers, Delhi.
- 13. Marimuthu R. (2008). Microscopy and Microtechnique. MJP Publishers, Chennai.
- 14. **Sharma V.K.** (1991). Techniques in Microscopy and Cell Biology. Tata McGraw-Hill Publishing Company Ltd.
- 15. Prasad and Prasad (1984). Outline of Microtechnique. Emkay Publications, Delhi.
- 16. Srivastava S. and Singhal V. (1995). Laboratory Methods in Microbiology. Anmol Publication Pvt. Ltd. Delhi.
- 17. Annie and Arumugam(2000). Biochemistry and Biophysics, Saras Publishing, Tamilnadu.
- 18. Sass John E. (1984). Botanical Microtechniques. Tata McGraw-Hill PublishingCompany Ltd.
- 19. Pal and Ghaskadabi(2009). Fundamentals of Molecular Biology.OxfordPublishing Co.

Course Code: 19ScBotP105 Course Name: Practical

Teaching Scheme: TH – 4 hrs/week	No. of credits: 2
Examination Scheme: CIA: 50 Marks	End-Sem: 50 Marks
Practicals based on Cryptogamic Botany I (Algae, Fungi, Licher	ns and Bryophytes) Algae(24 Practicals)
1. Morphological observations, documentation (description and i according to Fritsch with reasons of taxa belonging to (At least one	llustrations) and classification example from each order):
Chlorophyta- Any eight forms, Charophyta - Any two forms	3P
• Phaeophyta - Any five forms	1P
Rhodophyta - Any five forms	1P
Cyanophyta- Any five forms	1P
• Minor Groups - Any three forms	1P
Note: Collection tour to any marine/oceanic habitat to collect algae Fungi	is compulsory
1. Preparation of cotton blue, Lactophenol and culture medium - PD	DA 1P
2. Study of Lichens - Any three forms	1P
3. Study of representative genera belonging to following subdivision respect to vegetative, reproductive structures and classification with according to Ainsworth et al. (1973) (At least one example from eac	reasons
Myxomycotinaand Deuteromycotina-Any three forms	1P
• Mastigomycotinaand Zygomycotina- Any five forms	1P
Ascomycotina - Any five forms	2P
Basidiomycotina- Any five forms	2P

Note: Collection tour to any forest to observe, collect fungi and lichens and submission of ten specimens and excursions report is compulsory.

Bryophytes

Morphological, anatomical and reproductive studies of Bryophytes:1.Hepaticopsida: Asterella, Plagiochasma, Marchantia, Targionia, Cyathodium,
Fossombronia, Pallavicinia, Riccardia and Metzeria, Porella and Fruillania (Any six
forms)2. Anthocerotopsida: Anthoceros and Notothylus.1P3. Musci: Sphagnum, Funaria, Polytrichum, Pogonatum, Bryum (Any four forms)2P

3. Musci: *Sphagnum, Funaria, Polytrichum, Pogonatum, Bryum* (Any four forms) 2P Note: Excursion report on studies of Bryophytes from Western Ghat is compulsory. Submission of any five photographs of Bryophytes form each

Course Code: 19ScBotP106 Course Name: Practical		
Teaching Scheme: TH – 4 hrs/week	No. of credits: 2	
Examination Scheme: CIA: 50 Marks	End-Sem: 50 Mark	KS
	(24Practical	ls)
 Practicals based on Cell Biology and Evolution 1. Isolation of Chloroplasts to study: Hill reaction to measure intactness Chlorophyll estimation 		4P
2. Isolation of mitochondria for:Estimation of succinic dehydrogenase activity		2P
 3. Estimation of acid phosphatase activity. 4. Study of Electron Micrographs of cell organelles. 5. Isolation of protoplasts and viability staining to determine % via 6. Cytochemical / Histochemical studies of special cell types: guar 	d cells, senescent	2P 2P 2P
 cells, bundle sheath cells, meristematic cells, laticiferous cells, glat grains. 7. Study of induced cell senescence in leaf discs. 8. Isolation of lysosomal fraction and estimation of acid phosphata 8. Study of different plant fossils with respect to evolution- 		4P 2P 2P 2P
 Impression Compression Petrification Coal ball 		
9. Geological Time Scale		2P

Course Code: 19ScBotP201 Course Name: Cryptogamic Botany II-Pteridophytes, Gymnosperms and Paleobotany

Teaching Scheme: TH – 4 hrs/week Examination Scheme: CIA: 50 Marks No. of credits: 2

End-Sem: 50 Marks

Prerequisite Courses:

• Student should have basic knowledge of classification of Bryophytes and Pteridophytes

Course Objectives:

- To study general characteristics of each group with one example each
- To learn evolutionary relationship between the taxa
- To be expertise in field work

Course Outcome:

On completion of the course, student will be able to-

- Identify and classify the biological specimens in nature
- Collect, preserve and have his own start up

Chapter 1	Pteridophytes	5Lectures
	1.1 Distinguishing characters. Apospory,	
	Apogamy, parthenogenesis, Telome theory, Stelar	
	and soral Evolution	
	1.2 Gametophytes in Pteridophytes-	
	homosporous and heterosporous	
Chapter 2	Classification of Pteridophytes	5 Lectures
	2.1 Outline of Classification of pteridophytes.	
	2.2 Economic importance of pteridophytes.	
Chapter 3	Psilopsida	5Lectures
	3.1 Distribution	
	3.2 Distinguishing characters	
	3.3 Comparative study of sporophyte and	
	gametophyte of Psilotum and Tmesipteris	
Chapter 4	Lycopsida	5Lectures

	4.1 Distribution	
	4.2 Distinguishing characters	
	4.3 Affinities, comparative study of sporophyte and	
	gametophyte of Lycopodiales, Selaginellales,	
	Isoetales, Life cycle patterns	
Chapter 5	Sphenopsida	5Lectures
<u></u>	5.1 Distribution	
	5.2 Distinguishing characters	
	5.3 Comparative study of sporophyte and	
	gametophyte, Life cycle Pattern Equisetales	
Chapter 6	Pteropsida/Filicophyta	5Lectures
	6.1 Distribution	
	6.2 Distinguishing Characters	
	6.3 Comparative study of sporophyte and	
	gametophyte of order OphioglossalesOsmundales	
	,Filicales ,Marsileales ,Salviniales	
	,i medies ,ividisticales ,butvindies	
Chapter 7	Classification Gymnospermns	10Lectures
	7.1 Outline classification of Spermatophyta.	
	7.2 Gymnosperm classification as per Sahni	
	(1920), Chamberlain (1934), Raizda and Sahni	
	(1960), Sporne (1965) and Bierhorst (1971)	
	7.3 Distribution of gymnosperms- Worldwide	
	and in India, Economic aspects of gymnosperms	
Chapter 8	General characters	5Lectures
	8.1 Affinities, morphology of sporophytes and	
	gametophytes of living gymnosperm orders	
	8.1.1 Cycadales	
	8.1.2Ginkgoales	
	8.1.3 Coniferals	
	8.1.4Gnetales, Ephedrales and Welwitschiales	
Chapter 9	Paleobotany- Fossil Pteridophytes	7Lectures
	9.1 Psilopsida :- <i>Rhynia</i>	
	9.2 Lycopsida :- <i>Lepidodendron</i> ,	
	Lepidophyllum, Stigmaria, Lepidostrobus,	
	Lepidocarpon, Sigillaria.	
	9.3 Sphenopsida :- Calamites, Annularia,	
	Calamostach, Cheirostrobus.	
Chapter 10	Paleobotany- Fossil Gymnosperms	7Lectures
	10.1Cycadeoidales: General characters, structure of	
	Cycadeoidea and Williamsonia	
	10.2 Pentoxylales: General characters,	
	Pentoxylon, structure of secondary wood, male	
	and female strobili, and contribution of Birbal	

	Sahni 10.3Cordaitales:General characters, structure of <i>Cordaites</i> and <i>Cordaitanthus</i>	
Chapter 12	Discussion/guidance of experiential learning through field work	1 Lectures

- 1. **Bhatnagar S.P and MoitraAlok 1996**. Gymnosperms. New Age International Pvt. Ltd. Publishers, New Delhi, 470 pp.
- 2. **Biswas C and Johari B.M 2004.** The Gymnosperms Narosa Publishing House, New Delhi. 497 pp.
- 3. Sporne K.R 1965. The Morphology of Gymnosperms London, pp. 216.
- 4. Bierhorst D.W. 1971. Morphology of Vascular Plants. New York and London.
- 5. Chamberlain C.J 1934. Gymnosperms-Structure and Evolution, Chicago.
- 6. Coulter J.M. and Chamberlain C.J. 1917. Morphology of Gymnosperms, Chicago.
- 7. Foster A.S and Gifford E.M 1959. Comparative Morphology of Vascular Plants. San Francisco.
- 8. Maheshwari P. and Vasil, Vimla 1961. Gnetum, Delhi.
- 9. Blatter E and W.S Millard. 1929. Some Beautiful Indian Trees J.Bom. Nat Hist Soc. 33:624-635.
- 10. Bor N.L 1943. Manual of Indian Forest Botany. London.
- 11. **Cliford H.T and W. Stephenson. 1975.** An Introduction to Numerical Taxonomy. Academic Press, N.Y.

Course Code: 19ScBotP202 Course Name: Molecular Biology

Teaching Scheme: TH – 4 hrs/week Examination Scheme: CIA: 50 Marks No. of credits: 2 End-Sem: 50 Marks

Prerequisite Courses:

• A student should have a basic knowledge of molecularbiology

Course Objectives:

- To study the theoretical concepts and experimental techniques of molecular biology.
- To learnmechanism of prokaryotic and eukaryotic mechanisms of storage, retrieval and manipulation of genetic information.

Course Outcome:

On completion of the course, student will be able to-

- Understand molecular biology of prokaryotic and eukaryotic organisms.
- Understand the mechanisms and need of regulation of gene expression

Chapter 1	Structure and properties of nucleic	6	Lectures
	acids		
	1.1 Chemical and physical structures of		
	nucleic acids		
	1.2 Spectroscopic and thermal properties		
	of nucleic acids. (e.g. Buoyant density,		
	melting temperature, effect of acid and		
	alkali, UV absorption, hypo and		
	hyperchromicity)		
	1.3 Dissociation and reassociation kinetics		
	of DNA		
	1.4 C-value paradox		
	1.5 Cot curves, Cot ¹ / ₂ values and their		
	significance		
	1.6 Unique, moderately repetitive and		
	highly repetitive DNA		
	1.7 Forms of DNA. (A, B, C, Z)		
	1.8 RNA as a genetic material		
Chapter 2	Organisation of genetic material	2L	ectures

Chapter 3	 2.1 Packaging of genome in viruses and bacteria 2.2 Organelle genome organization 2.3 Structure of chromatin, nucleosome packaging, histone modification, chromosome organisation DNA replication 3.1 Mechanism of prokaryotic and eukaryotic DNA replication, replication apparatus 3.2 Origins of replication, priming and DNA polymerases 3.3 Models for mechanism of replication 	4Lectures
	 for circular DNA: Rolling circle and theta (Ø) models 3.4 Fidelity of replication 3.5 Extrachromosomal replications, DNA modification and DNA restriction 	
Chapter 4	DNA damage and repair	3Lectures
	 4.1 Types of DNA damage 4.2 Enzymes involving in repairing of DNA damages 4.3 Type of DNA repair 4.4 Photoactivation, excision repair, recombination repair and mismatch repair systems, SOS repair 	
Chapter 5	Gene structure	5Lectures
	5.1Structure and organization of prokaryotic and eukaryotic genes5.2Structure and role of promoters, exons, introns, terminators and enhancers.	
Chapter 6	Transcription	5Lectures
	 6.1 RNA polymerases and their role 6.2 Transcription apparatus 6.3 Transcription in prokaryotes and eukaryotes- Initiation, elongation and termination 	
Chapter 7	Processing of RNA	5 Lectures
Chapter 9	 7.1 Processing of tRNA, rRNA, RNA editing, capping, methylation, polyadenation and splicing 7.2 Ribonucleoproteins 7.3 Structure of mRNA- RNA transcript, RNA damage and RNA repair 	(1 actures
Chapter 8	Protein synthesis	6Lectures

		1
	8.1 Structure of mRNA, rRNA, tRNA and	
	ribosomal assembly	
	8.2 Mechanism of protein synthesis in	
	prokaryotes and eukaryotes: initiation,	
	elongation and termination	
	8.3 Translational and post translational	
	control	
Chapter 9	Post translational modifications of	6Lectures
	proteins	
	9.1 Targeting of organelle proteins	
	9.2 Protein folding and processing	
	9.3 Chaperones and chaperonins	
Chapter 10	Regulation of gene expression	3Lectures
	10.10peron concept (Lac, Tryptophan,	
	Arabinose)	
	10.2Positive and negative regulation of	
	prokaryotic genes	
	10.3Role of eukaryotic transcription	
	factors	
Chapter 11	Techniques used in molecular biology	8Lectures
	11.1RT Polymerase Chain Reaction	
	11.2Blotting techniques	
	11.3Mass-spectrometry	
Chapter 12	Promotor characterization	5Lectures
	12.1Promotor analysis through reporter	
	genes	
	12.2Electrophoretic mobility shift assay	
	12.3DNA foot-printing	
Chapter 13	Discussion/guidance of experiential	2Lectures
Chapter 15	learning through field work.	
	icar ming thi bugn ficiu work.	

1.Buchanan B.B, Gruissem W. and Jones R.L (2000). Biochemistry and Molecular Biology of Plants. American Society of Plant Physiologistsm Maryland, USA.

2. Dennis D.T., Turpin, D.H. Lefebvre D.D. and Layzell D.B. (eds) (1997). Plant Metabolism (Second Edition) Longman, Essex, England.

3. Moore T.C. (1989). Biochemistry and Physiology of Plant Hormones Springer – Verlag, New York, USA.

4. Verma S.K. and Verma Mohit (2007). A Text Book of Plant Physiology, Biochemistry and Biotechnology, S.Chand Publications.

5. Leninger A.C. (1987). Principles of Biochemistry, CBS Publishers and Distributers (Indian Reprint)

Course Code: 19ScBotP203 Course Name: Genetics and Plant Breeding

Teaching Scheme: TH – 4 hrs/week
Examination Scheme: CIA: 50 Marks

No. of credits: 2

End-Sem: 50 Marks

Prerequisite:

• A student should have a basic knowledge of genetics and plant breeding.

Course Objectives:

- To study the mechanism of inheritance
- To understand the concept, methodology and applications of plant improvement

Course Outcome:

On completion of the course, student will be able to-

• Work in seed industry as Technician and Assistant Plant Breeder

Chapter 1	Principles of mendelian inheritance and	6Lectures
	interaction of genes	
	Introduction to genetics	
	1.1 Early concepts of inheritance	
	1.2 Mendel's Laws - Dominance,	
	Segregation, Independent assortment,	
	Chi Square test and probability	
	1.3 Interaction of genes- Complementary,	
	epistasis, inhibitory, polymeric and	
	additive	
	1.4 Chromosomal theory of inheritance	
	1.5 Concept of gene, allele, multiple allele,	
	pseudo allele- complementation tests	
Chapter 2	Cytoplasmic inheritance:	3Lectures
	2.1 Mitochondrial and chloroplast genomes	
	2.2 Inheritance of chloroplast genes	
	(Mirabilis jalapa and Zea mays)	
	2.3 Inheritance of mitochondria genes	
	(Petite yeasts, cytoplasmic male	

	starility in plants)	
	sterility in plants)	
	2.4 Interaction between nuclear and	
	cytoplasmic genes	
	2.5 Maternal effect in inheritance (<i>Limnaea</i>	
	peregra)	
Chapter 3	Quantitative inheritance and	4Lectures
	Inheritance of complex traits	
	3.1 Quantitative traits, Continuous	
	variation	
	3.2 Inheritance of quantitative traits,	
	(Polygenic traits) - corolla length in	
	Nicotiana, cob length in Zea mays	
	3.3 Introduction to complex traits	
	3.4 Heritability and its measurement	
	3.5 Marker assisted selection	
Chapter 4	Population genetics	2Lectures
	4.1 Hardy Weinberg's Law	
	4.2 Factors affecting gene and gene	
	frequencies	
Chapter 5	Recombination, linkage and mapping in	11Lectures
Chapter e	eukaryotes	
	5.1 Linkage and crossing over	
	5.2 Recombination: homologous and non-	
	homologous, Inducing transposition site	
	specific recombination	
	5.3 Genetic markers	
	5.4 Linkage maps, lod score for linkage	
	testing, mapping by 3-point test cross	
	5.5 Mapping by tetrad analysis in <i>Yeast</i>	
	(unordered) and <i>Neurospora</i> (ordered)	
Chapter 6	Mutation	4 Lectures
	6.1 Mutation- causes and detection	
	6.2 Types of Mutation- lethal, conditional,	
	biochemical, loss and gain of function	
	6.3 Germinal v/s somatic mutants	
	6.4 Insertional mutagenesis	
	6.5 Point mutagenesis	
Chapter7	Microbial genetics	3Lectures
	7.1 Methods of genetransfers-	
	transformation, conjugation and	
	transduction in bacteria and genetic	
	recombination	
	7.2 Mapping of bacterial genome by	
	interrupted mating	
	7.3 Mutant phenotypes	
Chapter 8	Phage genetics	3Lectures
Chapter 0	1 haze zenenes	Sheering

	 8.1 Lytic and lysogenic cycles in phages 8.2 Genetic recombination- general and specialized transduction, site specific recombination in phage 8.3 Mapping the bacteriophage genome 8.4 Fine structure analysis of rII gene in T4 bacteriophage 	
	8.5 Phage mutants	
Chapter 9	Karyotype	2Lectures
	 9.1 Structure and organization of chromosome, Concept of karyotype and idiogram 9.2 Chromosome banding 9.3 Preparation of chromosome for karyotype analysis 9.4 Karyotype evolution 9.5 Role of karyotype in identification of plant apopies 	
Chapter 10	plant species Numerical alterations of chromosomes	4 Lectures
	 10.1Concept of polyploidy 10.2Classification of polyoploidy, cytological and genetical method of identification of autopolyploids and allopolyploids 10.3Classification, method of production, identification and meiotic behavior of aneuploids (Monosomics, Nullisomics and trisomics) 	
Chapter 11	Structural alterations of chromosomes	3 Lectures
	 11.1 Deletion, duplication, inversion, translocation, complex translocation heterozygotes 11.2Robertsonian 11.3 BA translocations 	
Chapter 12	Plant breeding	1Lectures
	12.1Pre and post mendelian development 12.2Objectives of plant breeding 12.3Plant breeding in India 12.4Patterns of evolution in cultivated crops	
Chapter 13	Plant genetic resources	2Lectures
	 13.1 Centers of origin, distribution and areas of diversity 13.2 Importance of genetic diversity in crop improvementand erosion of genetic diversity 13.3Importance of genetic diversity in 	

	conservation and regulation.	
Chapter 14	Reproductive systems, population	2Lectures
-	structure and breeding strategies	
	14.1 Sexual reproduction (Cross and self-	
	pollination)	
	14.2Asexual reproduction	
	14.3Pollination control mechanisms and	
	implications of reproductive system on	
	population structures	
	14.4 Genetic structure of populations	
Chapter 15	Selection methods	4 Lectures
	15.1 Selection methods in self-pollinated	
	crops	
	15.2 Selection methods in cross pollinated	
	crops	
	15.3Selection methods in asexually	
	propagated crops	
Chapter 16	Hybridization	3Lectures
	16.1Hybridization and its role	
	16.2Inter-varietal and wide/distant crosses	
	16.3Principles of combination breeding	
	and its application	
Chapter 17	Induced mutations in crop plants	1Lectures
	17. 1 Physical and chemical mutagens used	
	for induction of mutations, chimeras	
	17.2 General method of induction of	
	mutations in crop plants	
	17.3Role of induced mutations	
	17.4 Induction of polyploidy in crop plants	
	17.5 Role of polyploidy in plant breeding	AT (
Chapter 18	Discussion/guidance of experiential	2Lectures
	learning through field work.	

REFERENCES: -

1. Albert B. Bray, D Lewis, J Raff, M. Robert, K. and Walter 1989, MolecularBiology of the Cell (Second Edition) Garland Publishing Inc, New York.

2. Atherly, A.G., Girton, J.R. and McDonald, J.F 1999. The Science of Genetics Saunders College Publishing, Frot Worth, USA.

3. Burnham, C.R 1962. Discussions in Cytogenetics. Burgess Publishing Co. Minnesota.

4. Busch, H. and Rothblum. L 1982. Volume X. The Cell Nucleus rDNA part A. Academic Press.

5. Hartk D.L and Jones, E.W 1998 Genetics: Principles and Analysis (Fourth Edition). Jones and Bartlett Publishers, Massachusetts, USA.

6. Khush, G.S 1973. Cytogenetics of Aneuploids. Academic Press, New York, London.

7. Karp, G. 1999. Cell and Molecular Biology : Concept and Experiments. John Wiley

and Sons, Inc., USA.

8. Lewin, B. 2000. Gene VII. Oxford University Press, New York, USA.

9. Lewis, R. 1997. Human Genetics : Concepts and Application (Second Edition). WCB McGraw Hill, USA.

10.Malacinski, G.M and Freifelder, D. 1998 : Essentials of Molecular Biology (Third Edition). Jones and B. Artlet Publisher, Inc., London.

11.Russel, P.J. 1998. Genetics (Fifth Edition). The Benjamin/Cummings Publishing Company IND., USA.

12.Snustad, D.P and Simmons, M.J 2000. Principles of Genetics (Second Edition). John Wiley and Sons Inc., USA.

13. Gardner and Simmons Snustad 2005 (Eighth Edition). Principles of Genetics, John Wiley and Sons, Singapore.

14. Sariu C 2004 (Sixth Edition) Genetics. TATA McGraw-Hill Publishing Company Ltd., New Delhi.

15.Ahluwalia K.B 2005 (First Edition). Genetics. New Age International Private Ltd. Publishers, New Delhi.

16.Burus and Bottino 1989. (Sixth Edition). The Science of Genetics. Macmillan Publishing Company, New York (USA).

17.Pawar C.B 2003 (First Edition). Genetics Vol. I and II. Himalaya Publishing House, Mumbai.

18.Strickberger 2005. (Third Edition). Genetics. Prentice Hall of India Pvt. Ltd., New Delhi.

19. Allard R.W 1995. Priniples of Plant Breeding. John Wiley and Sons, Ice., Singapore. 20. Sharma J.R 1994 Principles and practices of Plant Breeding. Tata McGraw-Hill Publishers Company Ltd., New Delhi.

21.Singh B.D 1996 Plant Breeding – Principles and methods. Kalyani Publications, Ludhiana.

22.Chahal G.S and Gosal S.S 2002. Principles and procedures of Plant Breeding, Narosa Publishing House, New Delhi.

23. Verma and Agarwal, Genetics, S. Chand Co, New Delhi.

24.Toun N and Trempy Janire 2004 (First Indian Reprint). Fundamental Bacteial Genetics. Blackwell Publishing Co.

25.Singh B.D 2004. Genetics. Kalyani Publication, Ludhiana. 26. Gupta P.K Genetics and Cytogenetics, Rastogi Publications.

27.Maloy S.R, Cronan J.R and Freifelter D 2006. Narosa Publishing House, New Delhi.

Course Code: 19ScBotP204 Course Name: Biochemistry

Teaching Scheme: TH – 4 hrs/week Examination Scheme: CIA: 50 Marks No. of credits: 2 End-Sem: 50 Marks

Prerequisite:

• A student should have basicknowledge of structure of atoms, molecules, and their functions, and various life processes

Course Objectives:

- To study the molecular composition of living cells, the organization of biological molecules within the cell, and the structure and function of these biological molecules.
- To learnthe synthesis of proteins, lipids, nucleic acids, and carbohydrates and their role in metabolic pathways

Course Outcome:

On completion of the course, student will be able to:

- Understand the behavior of biological macromolecules
- Understand enzymes and cellular dynamics

Chapter 1	Water and buffers	3 Lectures
	1.1 Structure and properties of water1.2 Water as biological solvent1.3 Ionization of water, acids and bases, pH, buffers	
Chapter 2	Bioenergetics	3Lectures
	 2.1 Structure of atoms, molecules and chemical bonds 2.2 Principles of thermodynamics 2.3 Concept of free energy, changes in free energy during chemical reactions, entropy and enthalpy 2.4 Redox potentials 2.5 Dissociation and associations constants 2.6 Activation energy andbinding energy 	

Chapter 3	Enzymology	5 Lectures
	3.1 Classification and properties of enzymes, units of	
	enzyme activity, factors affecting enzyme activity	
	3.2 Enzyme Kinetics- substrate concentration and	
	rate, Michaelis – Menton equation	
	3.3 Competitive, uncompetitive and non-competitive	
	inhibitors	
	3.4 Covalent and allosteric regulation. coenzymes,	
	isoenzymes and co-factor	
Chapter 4	Carbohydrates	4Lectures
	4.1 General classification, structure, general	
	properties and functions of polysaccharides and	
	complex carbohydrates	
	4.2 Synthesis and breakdown of carbohydrates	
	(starch, glycogen and pectin)	
Chapter 5	Amino acids and proteins	8Lectures
	5.1 General classification of amino acids and proteins	
	5.2 Structure, synthesis and properties of amino acids	
	5.3 Proteins – Peptide synthesis: chemical and	
	Merrifield synthesis. Primary (peptide	
	conformation, N- and C- terminal, peptide	
	cleavage), Secondary (α -helix, beta sheets, and	
	random coil,), tertiary and quaternary structures	
	of proteins	
	5.4 Ramachandran plot	
Chapter 6	Metabolism of nucleic acids	7Lectures
	6.1 Structure and function of nucleotides.	
	6.2 Primary, secondary and tertiary structure of	
	nucleic acids, DNA forms and conformations,	
	Denaturation of DNA, RNA, Purines,	
	Pyrimidines, their biosynthesis and metabolism	
Chapter 7	Nitrogen metabolism	3Lectures
	7.1 Importance of nitrogen in biological systems,	
	nitrogen cycle	
	7.2 Nitrogen fixation; symbiotic and non-symbiotic,	
	nitrogenase complex, energetics and regulation	
	7.3 Formation of root nodules in legumes	
	7.4 Assimilation of nitrate and ammonium ion	
Chapter 8	Secondary metabolites	5Lectures

	 8.1 General classification of major pathways 8.2 Phenolics (Lignins, tannins) Flavonoids, terpenoids (steroids), Alkaloids, pigments (Carotenoids, Anthocynins) 	
Chapter 9	Lipid metabolism	7 Lectures
	9.1 Classification, structure, properties and functions of fatty acids, essential fatty acids, fats, phospholipids, sphingolipids, cerebrocides, steroids, bile acids, prostaglandins, lipoamino acids, lipoproteins, proteolipids, phosphatidopeptides and lipopolysaccharides	
Chapter 10	Radioactivity	5 Lectures
	 10.1 Radioactivity measuring techniques and correction factors 10.2Application of isotopes in biochemical analysis, isotope dilution techniques and autoradiography 10.3Radioisotopes in biochemistry and medicine 	
Chapter 11	Spectroscopy	8 Lectures
	 11.1 Concept of spectroscopy, electromagnetic spectrum 11.2 Beer – Lamberts law, principles and applications of colorimetry, UV-VIS spectrophotometry 11.3Concepts of fluorimetry, flame photometry, AAS, AES, Infrared, ESR, NMR, CD & ORD and X – ray diffraction 11.4Flowcytometry, cell sorting and their applications 	
Chapter 12	Discussion/guidance of experiential learning through field work.	2Lectures

1. Berg J.M., Tymoczko J.L., Stryrer L. (2002) Biochemistry. 5th Ed. Wlt. Freeman and Company, New York.

2. Buchanan B.B., Gruissem W., Jones R.L. (2000) Biochemistry and Molecular Biology of Plants. IK International, Mumbai.

3. Davis P. J. (Eds.).(2004) Plant Hormones.Kluwer Academic Publishers, Dordrecht, Netherlands.

4. Goodwin T.W., Mercer E.I. (1998) Introduction to Biochemistry. CBS Publishers, New Delhi.5. Heldt H. W. (2004) Plant Biochemistry. Academic Press, California.

6. Nelson David and Cox Michael. (2007) Lehninger Principles of Biochemistry.W.H.Freeman and Company. New York.

7. Lincolin Taiz and Eduardo Zeiger (2010) Plant Physiology, Fifth edition. Sinauer Associates, Inc. Publishers. Sunder land, USA

Course Code: 19ScBotP205 Course Name: Pracyical

Teaching Scheme: TH – 4 hrs/week	No. of credits: 2
Examination Scheme: CIA: 50 Marks	End-Sem: 50 Marks
Course Code : 19ScBotP205	Course Name : Practical

(24practicals)

Practicals based Pteridophytes, Gymnosperms and Paleobotany Pteridophytes

A. Morphological, anatomical and reproductive studies of Pteridophytes:		
1. Psilopsida: Psilotum and Tmesipteris (Figure of Tmesipteris must be shown)	1P	
2. Lycoposida and Sphenopsida: Lycopodium, Selaginella, Equisetum, Isoetes	4P	
3. Pteropsida: Ophioglossum, Angiopteris, Osmunda, Salvia, Azolla, Marsilea,		
Lygodium, Pteris, Adiantum, Gleichenia, Cheilanthus, Blechnum, Acrostichum	4P	
4. Fossil Pteridophytes: Any eight forms (At least one from each group)	3P	
Note: Collection and submission of any eight Pteridophytes and excursion report onstudies of		
Pteridophytes from Western Ghat is compulsory. Submissionof any five photog	raphs of	

Pteridophytes form each group.

Gymnosperms

1. Study of external, internal and reproductive morphology of Cycas and Zamia.2P2. Study of external, internal and reproductive morphology of Pinus, Cupressus, Araucaria,
Agathis and Podocarpus.(Any two)3P3. Study of external, internal and reproductive morphology of Gnetum and Ephedra.3P4. Study of fossil specimens of gymnosperm (any six) from order Pteridospermales,
Cycadeoidales and Pentoxylales.4P

Course Code: 19ScBotP206 Course Name: Practical

Teaching Scheme: TH – 4 hrs/week
Examination Scheme: CIA: 50 Marks

No. of credits: 2 End-Sem: 50 Marks

(18Practicals)

Practicals based on Biochemistry	
1. Preparation of solution of different concentrations, buffers, conductivity	and pH
measurements.	1P
2. Enzyme assays- extraction and estimation of enzyme activity-	Catalase
amylase/lipase/peroxidase.	3P
3. Purification of enzyme by ammonium sulphate precipitation/gel filtration.	1 P
4. Effect of pH and enzyme concentrations on enzyme activity.	2P
5. Effect of substrate concentration on rate of enzyme action and calculation of Km by	
Michalie's Menten Curve.	3P
6. Studies on induction of amylase activity by GA3 in germinating cereal grains.	2P
7. To perform colour test for carbohydrates (reducing and non-reducing sugars),	lipids and
proteins.	2 P
8. Isolation and estimation of chlorophylls and carotenoids. Separation of pigment usi	ng column
chromatography. Determination of absorption spectra of each pigment. 2P	C
9. To separate amino acids by means of paper chromatography and TLC (thin layer
chromatography) method.	2 P