Progressive Education Society's Modern College of Arts, Science and Commerce, Shivajinagar, Pune 5

(An Autonomous College Affiliated to Savitribai Phule Pune University)

Syllabus

M.Sc. (Mathematics)

(2019-20 Course)

(witheffectfrom 2019-20)

CIA:Continuous Internal Evaluation

Semester	1 (Part I)
----------	-----	---------

			1				
Course Type	Course Code	Course / Paper Title	Hours / Week	Credit	CIA	End Sem Exam	Total
CCT-1	19ScMatP101	Real Analysis	5	4	40	60	100
CCT-2	19ScMatP102	Advanced Calculus	5	4	40	60	100
CCT-3	19ScMatP103	Group Theory	5	4	40	60	100
CCT-4	19ScMatP104	Numerical Analysis	5	4	40	60	100
		Elective – I (Any one of the followin	g two)				
DCED 1	19ScMatP105	Ordinary Differential Equations	5	4	40	60	100
DSEP-1	19ScMatP106	Graph Theory					
Extra Credit Courses							
AECCT-1	19CpCysP101	Cyber Security-I	1	1	-	-	25
AECCT-2	19CpHrtP102	Human Rights-I	1	1	-	-	25
		Total	27	22			

Semester 2 (Part I)

Course Type	Course Code	Course / Paper Title	Hours / Week	Credit	CIA	End Sem Exam	Total
CCT-5	19ScMatP201	Complex Analysis	5	4	40	60	100
CCT-6	19ScMatP202	General Topology	5	4	40	60	100
CCT-7	19ScMatP203	Ring Theory	5	4	40	60	100
CCT-8	19ScMatP204	Linear Algebra	5	4	40	60	100
		Elective – II (Any one of the following	ng two)				
DCED 2	19ScMatP205	Partial Differential Equations	5	4	40	60	100
DSEP-2	19ScMatP206	Integral Equations and Transforms					
Extra Credit Courses							
AECCT-3	19CpCysP201	Cyber Security-II	1	1	-	-	25
AECCT-4	19CpHrtP202	Human Rights-II	1	1	-	-	25
		Total	27	22			

Course Code: 19ScMatP101 Course Name: Real Analysis

Teaching Scheme: TH: 4 Hours/Week

Examination Scheme: CIA: 50 Marks

Prerequisites:

• Measure theory on real numbers, Exterior measure, Lebesgue measure, Measurable sets.

Course Objectives: To study

- Measure theory on a set
- Cantor Set
- Lebesgue integration theory
- Differentiation of functions on Rⁿ

Course Outcomes:

On completion of the course, student will be able to-

- Find exterior measure and Lebesgue measure
- Check measurability of sets
- Find differentiation and integration of functions on Rⁿ

Course Contents:

Chapter 1	Measure Theory	16 TH + 4 TUT
	Exterior measure	
	• Measurable sets	
	Cantor set	
	Lebesgue measure	
	Measurable functions	
Chapter 2	Integration Theory	16 TH + 4 TUT
	• The Lebesgue integral	
	Basic properties and convergence	
	theorems	
	• The space L ¹ of integrable functions	
	• Fubini's theorem.	
Chapter 3	Differentiation and Integration	15 TH + 4 TUT
	• Differentiation of the integral	
	• Good Kernels and approximation to the	
	identity	

Credit: 04

End-Sem: 50 Marks

	• Differentiation of functions on R ⁿ	
Guidance/Discussion on course specific experiential learning through field work		1 TH
	TOTAL	60 = 48 TH + 12 TUT

- 1. Real Analysis by Elias M. Stein and RamiShakharchi, Princeton University Press, 2005.
- 2. Real Analysis by H. Royden, Prentice Hall (Fourth edition), 2010.
- 3. Principles of Mathematical Analysis by W. R

Course Code: 19ScMatP102 Course Name: Advanced Calculus

Teaching Scheme: TH: 4 Hours/Week

Credit: 04

Examination Scheme: CIA: 50 Marks

End-Sem: 50 Marks

Prerequisites:

Derivative, Integration, Scalar field, Vector field,

Course Objectives: To study

- Derivative of scalar and vector field
- First and second fundamental theorems of calculus for line integrals
- Double integrals and Green's theorem
- Stokes' theorem and Divergence theorem
- Inverse function theorem and Implicit function theorem

Course Outcomes:

On completion of the course, student will be able to-

- Find area of the surface using double integration
- Find volume of the surface using double integration
- Find curl and divergence of a vector field
- Find directional derivative and gradient of a scalar field

Chapter 1	Differential Calculus of Scalar and Vector Fields	11 TH + 3 TUT
	• Derivative of scalar field with respect	
	to a vector	
	• Directional derivative	
	• Gradient of scalar field	
	• Derivative of a vector field	
	• Matrix form of chain rule	
	• Inverse function theorem	
	• Implicit function theorem	
Chapter 2	Line Integrals	12 TH + 3 TUT
	• Path and line integrals	
	• Work as a line integral	
	• Independence of path	

	 The first and second fundamental theorem of calculus Necessary condition for a vector field to be a gradient 	
Chapter 3	Multiple Integrals	12 TH + 3 TUT
	 Double integrals Applications to area and volume Green's theorem in the plane Change of variables in a double integral Transformation formula Change of variables in an n-fold integral 	
Chapter 4	Surface Integrals	12 TH + 3 TUT
	 The fundamental vector product Area of a parametric surface Surface integrals The theorem of Stokes The curl and divergence of a vector field Gauss divergence theorem Applications of the divergence theorem 	
Guidance/Discussion or through field work	n course specific experiential learning	1 TH
	TOTAL	60= 48TH + 12 TUT

- 1. Calculus Vol.II by T.M. Apostol, Wiley Student Edition (Second Edition), 2002.
- 2. Principles of Mathematical Analysis by W. Rudin, McGraw Hill, 1964.
- 3. Mathematical Analysis by S.C. Malik and Savita Arora, New Age International Private Limited (Fifth Edition), 2017.

Course Code: 19ScMatP103 Course Name: Group Theory

Teaching Scheme: TH: 4 Hours/Week

Credit: 04

End-Sem: 50 Marks

Examination Scheme: CIA: 50 Marks

Prerequisites:

- Definition and examples of groups.
- Types of groups.

Course Objectives:-To Study

- Groups and subgroups.
- Symmetries of square.
- Cyclic groups, Permutation groups, Normal subgroups and Quotient groups.
- Homomorphism and Isomorphism between groups.

Course Outcomes:

On completion of the course, student will be able to-

- Find number of groups up to isomorphism.
- Find homomorphism and isomorphism between groups.
- Identify symmetries in the object.

Chapter 1	Groups and Subgroups	9 TH +2 TUT
	Groups	
	Group of matrices	
	• Symmetries of a square, The dihedral	
	groups, The rotation group of a cube	
	 Elementary properties of groups 	
	Subgroups	
	Subgroup tests	
Chapter 2	Cyclic Groups	8TH +2TUT
	Cyclic groups	
	 Properties of cyclic groups 	
	Classification of subgroups of cyclic	
	groups	
Chapter 3	Permutation Groups	8TH + 2 TUT
	Permutation groups	

	• Properties of permutation groups	
	Cycle notation	
Chapter 4	Group Homomorphism and Isomorphism	8TH + 2 TUT
	Homomorphism and Isomorphism of	
	Groups	
	 Properties of homomorphism, 	
	isomorphism and automorphism	
	• The first isomorphism theorem	
	 Cosets and Lagranges theorem 	
	• Cayley's theorem	
Chapter 5	External and Internal Direct Products	8 TH +2 TUT
	• External direct product, Internal direct	
	product	
	• Properties of external direct product	
	and internal direct product	
	 Normal subgroups and Factor groups 	
	 Applications of Factor groups 	
	• The fundamental theorem of finite	
	abelian group	
Chapter 6	Sylow Theorems	6TH +2 TUT
	 Conjugacy classes 	
	• The class equation	
	• Probability that two elements	
	commute	
	• The Sylow theorems	
	• Application of the Sylow theorems	
	ourse specific experiential learning	1 TH
through field work	TOTAL	60=48 TH + 12 TUT
	IOTAL	00-48 1 H + 12 1 U I

- 1. Contemporary Abstract Algebra by Joseph Gallian, Richard Stratton (Seventh edition), 2010.
- 2. Topics in Algebra by I.N.Herstein, John Wiley and Sons(Second edition), 1975.
- 3. Abstract Algebra by Dummit and Foote, John Wiley and Sons(Third edition), 2003.
- 4. A First Course in Abstract Algebra by John B. Fraleigh, Pearson Education, 2003.

Course Code: 19ScMatP104 Course Name: Numerical Analysis

Teaching Scheme: TH: 4 Hours/Week

Credit: 04

Examination Scheme: CIA: 50 Marks

End-Sem: 50 Marks

Prerequisites:

Roots of equation, System of linear and nonlinear equations, Integration and Differentiation, Eigenvalues and eigenvectors, First order and first-degree differential equation

Course Objectives: To study

- Methods of finding real roots
- Numerical methods for finding solution of system of linear and nonlinear equations
- Methods of obtaining eigenvalues and eigenvectors of matrices numerically
- Numerical differentiation and integration

Course Outcomes:

On completion of the course, student will be able to-

- Find real roots of algebraic and transcendental equations
- Understand numerical methods to solve system of linear and nonlinear equations
- Find eigenvalues and eigenvectors of matrices numerically
- Find differentiation and integration numerically
- Understand method to solve differential equations

Chapter 1	Root Finding Methods	8 TH + 2 TUT
	 Convergence Fixed point iteration scheme Newton's method Secant method Accelerating convergence 	
Chapter 2	System of Equations	11 TH + 3 TUT

	 Formation of system of equations Gaussian elimination method Pivoting strategies Error estimates and condition number LU decomposition Direct factorization Iterative techniques for linear systems Nonlinear system of equations 	
Chapter 3	Eigenvalues and Eigenvectors	9 TH + 2 TUT
	 The power method The inverse power method Reduction to symmetric tridiagonal form Eigenvalues of symmetric tridiagonal matrices 	
Chapter 4	Differentiation and Integration	10 TH + 3 TUT
	 Numerical differentiation using Lagrange's interpolating polynomial Numerical integration Newton's- Cotes quadrature Composite Newton's-Cotes quadrature 	
Chapter 5	Initial Value Problems of Ordinary Differential Equation	9 TH + 2 TUT
	 Euler's Method Runge-Kutta Methods Multistep Methods Convergence and stability analysis 	
Guidance/Discussion on co through field work	ourse specific experiential learning	1 TH
	TOTAL	60 = 48 TH + 12 TUT

1. A friendly introduction to Numerical Analysis byBrian Bradie, Prentice Hall ,2007.

2. An introduction to Numerical Analysis by K. E. Atkinson, John Wiley and Sons (Second edition), 1978.

Course Code: 19ScMatP105 Course Name: Ordinary Differential Equations

Teaching Scheme: TH: 4 Hours/Week

Credit: 04

Examination Scheme: CIA: 50 Marks

End-Sem: 50 Marks

Prerequisites:

Derivative, Integration, Homogeneous differential equations of first order, Exact differential equations, Integrating factors.

Course Objectives: To study

- Second order linear differential equations
- Qualitative properties of solutions
- Power series solutions of first and second order linear differential equations
- System of first order and first degree differential equations
- Non linear differential equations
- Existence and uniqueness of solutions of differential equations

Course Outcomes:

On completion of the course, student will be able to-

- Find general solutions of homogeneous and non-homogeneous differential equations
- Find normal form of differential equations
- Find solutions of differential equations using power series
- Find critical points of differential equations and check for stability of differential equations.

Chapter 1	Second order linear equations	8 TH + 2 TUT
	• The general solution of homogeneous equation	
	• The use of known solution to find another	
	• Homogeneous equations with constant coefficients	
	• The method of undermined coefficients	
	• The method of variation of parameters	
Chapter 2	Qualitative properties of solutions	8 TH + 2 TUT
	• Sturm separation theorem	
	Normal form	
	Standard form	

	Sturm's comparison theorem	
Chapter 3	Power series solutions	7 TH + 2 TUT
	• Review of power series	
	• Series solutions of first order equations	
	• Second order linear equations	
	• Ordinary points and regular singular	
	points	
	Indicial equations	
	Gauss hypergeometric equations	
	• The point at infinity	
Chapter 4	Systems of first order equations	8 TH + 2 TUT
	• General remarks on systems	
	• Linear systems	
	• Homogeneous linear systems with	
	constant coefficients	
	Non linear systems	
	Volterra's Prey-Predator equations	
Chapter 5	Non-linear equations	8 TH + 2 TUT
	 Autonomous systems 	
	Critical points	
	• Stability	
	 Liapunov's direct method 	
	Nonlinear mechanics	
	Conservative systems	
Chapter 6	The existence and uniqueness of	8 TH + 2 TUT
	solutions	
	• The method of successive	
	approximations	
	Picard's Theorem	
	• Systems	
	• The second order linear equations	
	ourse specific experiential learning	1 TH
through field work	TOTAL	60-48 TU + 10TUT
	IUIAL	60=48 TH + 12TUT

1. Differential equations with applications and historical notes by G. F. Simmons, Mc-Graw Hill (Second edition), 2003.

2. An introduction to differential equations and their applications by Stanley J. Farlow, Mc-Graw Hill, 1994.

3. Ordinary and partial differential equations by M. D. Raisinghania, S. Chand and Co. (18th Edition), 1976.

Course Code: 19ScMatP106 Course Name: Graph Theory

Teaching Scheme: TH: 4 Hours/Week

Credit: 04

End-Sem: 50 Marks

Examination Scheme: CIA: 50 Marks

Prerequisites:

- Graphs.
- Types of graphs.

Course Objectives: To Study

- Various types of graphs such as Eulerian graphs, Hamiltonion graphs, etc.
- Trees, Planarity and duality of graphs, Colouring of graphs.
- Digraphs, Tournaments.

Course Outcomes:

On completion of the course, student will be able to-

- Apply Euler's formula for planar graphs.
- Understand Eulerian digraphs and tournaments.
- Understand applications of Hall'stheorem.

Chapter 1	Definitions and examples	10 TH + 3 TUT
	• Introduction	
	• Examples of graphs	
	• Embedding of graphs	
	• Eulerian graphs	
	Hamiltonian graphs	
Chapter 2	Trees, planarity and duality	12 TH +3 TUT
	• Definition and elementary properties of	
	trees	
	• The enumeration of trees	
	Planar graphs	
	• Euler's formula for plane graphs	
	• Graphs on other surfaces	
	• Dual graphs	
	• Infinite graphs	

Chapter 3	The colouring of graphs	10 TH +2 TUT
	• The chromatic number	
	• The proof of Brook's theorem	
	• The colouring of maps	
	Edge-colouring	
	Chromatic polynomial	
Chapter 4	Digraphs	6 TH +2 TUT
	Digraphs	
	• Eulerian digraphs and tournaments	
	Markov chains	
Chapter 5	Matching, marriage and Menger's	9 TH +2 TUT
	theorem	
	Hall's marriage theorem	
	• Transversal theory	
	 Applications of Hall's theorem 	
	• Menger's theorem	
	Network flows	
	ourse specific experiential learning	1 TH
through field work		
	TOTAL	60=48 TH + 12TUT

- 1. Introduction to graph theory by R. J. Wilson, Pearson (Third edition), 2003.
- 2. A first look at Graph Theory by John Clarke and D. A. Holton, Allied Publisher, 1991.
- 3. Graph Theory by Harary, Narosa Publishers, 1989.

Course Code: 19ScMatP201 Course Name: Complex Analysis

Teaching Scheme: TH: 4 Hours/Week

Examination Scheme: CIA: 50 Marks

Prerequisites: Basic concepts of complex numbers.

Course objectives: To Study

- Cauchy's theorem
- Meromorphic functions
- Bilinear Transformation

Course Outcomes:

On completion of the course, student will be able to-

- Find integral value of meromorphic functions
- Find radius of convergence, poles and residues
- Find mapping between two complex functions

Course Contents:

Chapter 1	Preliminaries to complex numbers	11 TH + 3 TUT
	• Complex number and the complex plane	
	Basic properties	
	Convergence	
	• Sets in the complex plane	
	• Functions on the complex plane	
	Continuous functions	
	Holomorphic functions	
	Power series	
	 Integration along curves 	
Chapter 2	Cauchy's theorem and its applications	14 TH + 4 TUT
	• Goursat's theorem	
	• Local existance of primitives and	
	Cauchy's theorem in a disk	
	• Evaluation of some integrals	
	• Further applications	
	Morera's theorem	
	• Sequences of holomorphic functions	

15

End-Sem: 50 Marks

Credit: 04

Chapter 3	 Holomorphic functions defined in terms of integral Schwartz reflection principle Runge's approximation theorem. Moromorphicfunctions and the logarithm Zeros and poles The residue formula and its examples Singularities and meromorphic functions The argument principle and applications Homotopies and simply connected domain The complex logarithm 	14 TH + 3 TUT
	 The complex logarithm Fourier series and harmonic functions 	
Chapter 4	Bilinear transformation and mappings	8 TH + 2TUT
	Basic mappingsLinear fractional transformations	
Guidance/Discussion through field work	on course specific experiential learning	1 TH
	TOTAL	60= 48 TH + 12 TUT

- 1. Complex Analysis by E.Stein and R.Shakharchi, Princeton University Press, 2003.
- 2. Foundations of Complex Analysis by S. Ponnusamy, Alpha Science International Ltd. (Second Edition), 2005.

Course Code: 19ScMatP202 Course Name: General Topology

Teaching Scheme: TH: 4 Hours/Week

Examination Scheme: CIA: 50 Marks

Prerequisites: Set theory, Metric spaces

Course Objectives: To study

- Countable and uncountable sets
- Basis and types of topology
- Connectedness and compactness
- Countability and separation axiom
- Tychonoff theorem

Course Outcomes:

On completion of the course, student will be able to-

- Check countability of a set
- Compare the topologies
- Check continuity of a function
- Check connectedness and compactness of spaces
- Find limit points and closure of a set
- Check normality and regularity of spaces

Course Contents:

Chapter 1	Countable and uncountable sets	8 TH + 2TUT
	• Infinite sets,	
	• The axiom of choice	
	Continuum hypothesis	
	• Well-ordered sets	
	• The maximum principle	
Chapter 2	Topological spaces and continuous	8 TH + 2TUT
	functions	

Credit: 04

End-Sem: 50 Marks

	Basis of topology	
	• Order topology	
	Continuous functions	
	Product topology	
	Metric topology	
	Quotient topology	
Chapter 3	Connectedness and compactness	11 TH + 3TUT
	Connected spaces	
	Components and local connectedness	
	Compact spaces	
	Limit point compactness	
	Local compactness	
	One-point compactness	
Chapter 4	Countability and separation axioms	12 TH + 3TUT
	• The countability axiom	
	Separation axiom	
	Normal spaces	
	• The Urysohn lemma	
	• The Urysohnmetrization theorem	
	• The Tietze extension theorem	
Chapter 5	Tychonoffspaces	8 TH+ 2TUT
	Tychonoff theorem	
	• Completely regular spaces	
Guidance/Discussion o through field work	n course specific experiential learning	1 TH
	TOTAL	60 = 48TH + 12TUT

- 1. Topology: A first course by J. R. Munkres, Pearson (Second edition), 1999.
- 2. Topology by J. Dugundji, Allyn and Bacon, Boston, 1966.

Course Code: 19ScMatP203 Course Name: Ring Theory

Teaching Scheme: TH: 4 Hours/Week

Credit: 04

Examination Scheme: CIA: 50 Marks

Prerequisites:

- Definition and examples of rings
- Vector spaces

Course Objectives: To Study

- Various types of rings such as polynomial ring, Boolean ring, etc.
- Integral domains, Fields, Principal ideal domains, Unique factorization domains and Modules

Course Outcomes:

On completion of the course, student will be able to-

- Find number of rings, subrings, ideals, integral domains, fields up to isomorphism.
- Check reduciability and irreduciability of polynomials
- Find homomorphism and isomorphism between rings
- Identify modules

Course Contents:

Chapter 1	Rings	10 TH +3 TUT
	 Rings, Opposite rings, Integral Domains, Fields Ring of matrices, Boolean rings. Polynomial rings: Power series rings, Laurent series rings 	
Chapter 2	Ideals	12 TH +3 TUT
	 Ideals Maximal ideal, Minimal ideal, Prime ideal, Principal ideal Relation between ideals, Integral domains and fields 	
Chapter 3	 Homomorphism and isomorphism of rings Homomorphism and isomorphism of rings Properties of homomorphism and 	7 TH +2 TUT

End-Sem: 50 Marks

Chapter 4	 isomorphism Fundamental theorems Endomorphism rings Fields of fractions Prime fields Integral domains Euclidean domains 	8 TH +2 TUT
Chapter 5	 Principal ideal domains Unique factorization domains Polynomial rings that are U.F.D.'s Irreducibility Criteria 	10 TH +2 TUT
	 Modules and submodule Quotient modules Free modules Module homomorphism Tortion free modules 	
specific experiential learnin through field work	Guidance/Discussion on course	1 TH 60=48 TH + 12TUT

- 4. Rings and Modules by C. Musili, Narosa Publishing House(Second edition),2001.
- 5. Abstract Algebra by Dummit and Foote, John Wiley and Sons(Third edition), 2003.
- 6. Basic Abstract Algebra by Jain and Bhattacharya, Cambridge University Press (Second edition), 2003.

Course Code: 19ScMatP204 **Course Name: Linear Algebra**

Teaching Scheme: TH: 4 Hours/Week

Examination Scheme: CIA: 50 Marks

Prerequisites: Matrix, Vector spaces, Basis and dimension, Linear transform, Inner product.

Course Objectives: To study

- Basis and dimension of vector spaces
- Matrix of linear transforms
- The reduction of matrices to triangular and canonical forms
- Metric vector spaces

Course Outcomes:

On completion of the course, student will be able to-

- Find basis and dimension of vector spaces
- Find matrix of linear transform
- Reduce matrix to triangular form
- Reduce matrix to Jordan canonical form
- Find matrix of bilinear, quadratic and Hermitian form

Course Contents:

Chapter 1	Vector spaces	12 TH + 3 TUT
	 Definitions and examples 	
	Subspaces	
	Basis and dimension	
Chapter 2	Linear mapping and matrices	12 TH + 3 TUT
	Linear mapping	
	Quotient spaces	
	 Vector spaces of linear mapping 	
	 Linear mapping and matrices 	
	Change of basis	
	• Rank of linear mapping	
	• Decomposition of vector space	
Chapter 3	Reduction of matrices to canonical forms	12 TH + 3 TUT

Credit: 04

End-Sem: 50 Marks

	 Eigenvectors and eigenvalues Triangularization of a matrix Jordan canonical form 	
Chapter 4	 Metric vector spaces Bilinear forms Symmetric bilinear forms Quadratic forms Hermitian forms Euclidean vector space Canonical representation of unitary operator Euclidean spaces 	<u>11 TH + 3 TUT</u>
Guidance/Discussion on co Throughfield work	ourse specific experiential learning	1 TH
	TOTAL	60 = 48 TH + 12 TUT

- 1. First Course in Linear Algebra by P. B. Bhattacharya, S. R. Nagpaul, S. K. Jain, New Age International Pvt. Ltd., 2012.
- 2. University algebra by N. S. Gopalakrishnan, New Age International Pvt. Ltd., 2018.
- 3. Linear Algebra by <u>Vikas</u>Bist and <u>Vivek Sahai</u>, Narosa Publishing House, 2001.

Course Code: 19ScMatP205 **Course Name: Partial Differential Equations**

Teaching Scheme: TH: 4 Hours/Week

Examination Scheme: CIA: 50 Marks

Prerequisites: Continuity, Integration, Partial derivative, Curves and surfaces, Solution of systems of differential equations

Course Objectives: To study

- First and second order linear partial differential equations
- Heat and wave equations
- Boundary value problems
- Heat conduction problems

Course Outcomes:

On completion of the course, student will be able to-

- Solve first and second order linear partial differential equations using various methods
- Solve boundary value problems

Course Contents:

Chapter 1	First order partial differential equations	16 TH + 4 TUT
	 Classification of integrals Linear equations of first order Pfaffian differential equations Compatible systems Charpit's method Jacobi's method Integral surfaces through a given curve Quasi linear equation Nonlinear first order P.D.E. 	
Chapter 2	Second order partial differential equations	31 TH + 8 TUT
	 Classification of second order partial differential equations One dimensional wave equation Laplace equation Boundary value problems 	

End-Sem: 50 Marks

Credit: 04

	• The Cauchy problem	
	• Dirichlet and Neumann problem	
	• Harnack's theorem	
	Heat conduction problem	
	Duhamel's principle	
	• Classification in the case of n-variables	
	• Families of equipotential surfaces	
	• Kelvin's inversion theorem	
Guidance/Discussion on course specific experiential learning		1 TH
through field work		
	TOTAL	60 = 48 TH + 12 TUT

- 1. An elementary course in Partial Differential Equations by T. Amaranth, Narosa Publishing House (Second edition), 2008.
- 2. Elements of Partial Differential Equations by I. N. Sneddon, Mc-Graw Hill book company, 2006.
- 3. Ordinary and partial differential equations by M. D. Raisinghania, S. Chand and Co. (Eighteenth Edition), 1976.

Course Code: 19ScMat206 Course Name: Integral Equation and Transforms

Teaching Scheme: TH: 4 Hours/Week

Credit: 04

Examination Scheme: CIA: 50 Marks

End-Sem: 50 Marks

Prerequisites:

Integration, Differentiation, Ordinary differential equations, Initial value problems.

Course Objectives: To study

- Classification of integral equations.
- Methods to solve Fredholm integral equations.
- Methods to solve Volterra integral equations.
- Methods to solve singular integral equations.
- Methods to solve non-linear integral equations.
- Methods to obtain Fourier and Laplace transforms.

Course Outcomes:

On completion of the course, student will be able to-

- Classify integral equations.
- Solve Fredholm integral equations.
- Solve Volterra integral equations.
- Solve singular integral equations.
- Solve non-linear integral equations.
- Obtain Fourier and Laplace transforms.
- Solve differential and integral equations using Fourier and Laplace transforms.

Chapter 1	Classification of linear integral equations	6 TH + 1 TUT
	• Fredholmintegral equations	
	• Volterra integral equations	
	• Integro-differential equations	
	• Singular integral equations	
	• Converting Volterra integral equation to ordinary differential equation	
	• Conversion of initial value problem to Volterra integral equation	
	• Conversion of BVP to Fredholm	

	equation	
Chapter 2	Fredholm integral equations	6 TH + 2TUT
	Decomposition method	
	Modified decomposition method	
	• Direct computation method	
	• Successive approximation method	
	• Successive substitution method	
	Homogeneous Fredholm integral	
	equations	
	Comparison between alternative	
	methods	
Chapter 3	Volterra integral equations	6 TH + 2 TUT
	Decomposition method	
	Modified decomposition method	
	• Series solution method	
	• Converting Volterra integral equation	
	to initial value problem	
	Successive approximation method	
	Successive substitution method	
	Comparison between alternative	
	methods	
Chapter 4	Integro-differential equations	6 TH + 1 TUT
	Introduction	
	 Direct computation method 	
	 Decomposition method 	
	 Converting to Fredholm integral 	
	equation	
	• Volterra integro-differential equations	
	series solution method	
	Conversion to initial value problem	
Chapter 5	Singular integral equations	5 TH+ 1 TUT
	Abel problem	
	Generalized Abel integral equation	
	Weakly-singular Volterra equations	
Chapter 6	Nonlinear integral equations	6 TH+ 1 TUT
	• Nonlinear Fredholm integral equations	
	• Direct computation method	
	 Decomposition method 	
	• Nonlinear Volterra integral equation	
	• Series solution method	
	 Decomposition method 	
	• Existence and uniqueness of solutions	
	using fixed point theorem in case of	
	linear and nonlinear Volterra and	
	Fredholm integral equations	
Chapter 7	Fourier transforms	6 TH+ 2 TUT

	 Definition, Properties and evaluation of Fourier and inverse Fourier transforms of functions Convolution theorem for Fourier transforms Sine and cosine Fourier transforms Solving differential equations and integral equations using Fourier transforms 	
Chapter 8	Laplace transforms	6 TH+ 2 TUT
	 Definition, Properties and evaluation of Laplace transforms. Convolution theorem for Laplace transforms Solving differential equation and integral equation using Laplace transforms. 	
Guidance/Discussion on course specific experiential learning through field work		1 TH
	TOTAL	60= 48TH + 12TUT

- 1. A First course in integral equations by A.M. Wazwaz, World Scientific, 1997.
- 2. Introduction to Integral Equations with Applications by A.J. Jerri, Wiley Interscience

(Second edition), New York, 1999.