Progressive Education Society's Modern College of Arts, Science and Commerce,

Shivajinagar, Pune 5 (An Autonomous College Affiliated to SavitribaiPhule Pune University)

Detailed Syllabus

For B.Sc. (Computer Science)

(Mathematics)

(2019-20 Course)

(with effect from **2019-20**)

CIA: Continuous Internal Evaluation

Semester 1 (First Year)

Course Type	Course Code	Course / Paper Title	Hours / Week	Credit	CIA	End Sem Exam	Total
CCT-1	19CsMatU101	Discrete Mathematics	3	2	40	60	100
CCT-2	19CsMatU102	Algebra	3	2	40	60	100
CCP-1	19CsMatU103	Mathematics Practical – I	4	2	40	60	100
		Total	10	6	120	180	300

Semester 2 (First Year)

Course Type	Course Code	Course / Paper Title	Hours / Week	Credit	CIA	End Sem Exam	Total
CCT-3	19CsMatU201	Graph Theory	3	2	40	60	100
CCT-4	19CsMatU202	Calculus	3	2	40	60	100
CCP-2	19CsMatU203	Mathematics Practical – II	4	2	40	60	100
		Total	10	6	120	180	300

Course Code: 19CsMatU101 Course Name: Discrete Mathematics

Teaching Scheme: TH: 3 Hours/Week

Examination Scheme: CIA: 40 Marks

Prerequisites: Set, Logic, Permutations, Combinations, Counting principles, Algebra of equations.

Course Objectives: To study

- Logic, Predicates and quantifiers, Rules of inference.
- Posets, Lattices and types of lattices.
- Permutations and combinations and its properties.
- First and second principle of mathematical induction
- Linear homogeneous recurrence relations.

Course Outcomes:

On completion of the course, student will be able to:-

- Apply different methods of proofs.
- Check whether given set is a lattice or not.
- Solve problems based on counting principles.
- Solve linear homogeneous recurrence relation.

Course Contents:

Chapter 1	Logic	7 lectures
	Revision: Propositional logic, Propositional	
	equivalences.	
	• Predicates and Quantifiers: Predicate, n-Place	
	Predicate or,n-ary Predicate, Quantification and	
	Quantifiers, Universal Quantifier, Existential	
	Quantifier, Quantifiers with restricted domains,	
	Logical Equivalences involving Quantifiers.	
	• Rules of Inference: Argument in propositional	
	Logic, Validity of an Argument, Direct and Indirect	

Credit: 02

End-Sem: 60 Marks

	methods of proofs, Rules of Inference for	
	Propositional Logic, Building Arguments.	40.1
Chapter 2	Lattices and Boolean Algebra	10 lectures
	• Poset, Hasse diagram.	
	• Lattices, Complemented lattice, Bounded lattice and	
	Distributive lattice – Definition and examples.	
	• Boolean Functions: Introduction, Boolean variable,	
	Boolean Function of degree n, Boolean identities,	
	Definition of Boolean Algebra and examples.	
	Representation of Boolean Functions: Minterm, Mayterm, Disjunctive Normal form, Carinasting	
	Maxterm, Disjunctive Normal form, Conjunctive	
Chapter 2	Normal Form.	12 loctures
Chapter 5	Counting Frinciples	12 lectures
	• Cardinanty of a Set: Cardinanty of a finite set.	
	• Basics of Counting: The Sum Rule, the Inclusion Evolution Principle	
	The Disconhole Dringiple: Statement the	
	• The Figeomote Finciple. Statement, the Generalized Pigeophole Principle. Its Applications	
	Demetatized Figeomole Fillepie, its Applications. Demutations and Combinations : Dermutation and	
	Combination with Repetitions, Permutations with	
	Indistinguishable Objects Distributing objects into	
	boxes: Distinguishable objects and distinguishable	
	boxes. Indistinguishable objects and distinguishable	
	boxes. Distinguishable objects and Indistinguishable	
	boxes, Indistinguishable objects and	
	Indistinguishable boxes	
	• Method of first and second principle of	
	Mathematical Induction, Examples.	
Chapter 4	Recurrence Relations	6 lectures
	• Recurrence Relations: Introduction, Formation.	
	 Linear Recurrence Relations with constant 	
	coefficients.	
	Homogeneous Solutions.	
Guidance / Discu	ission on course specific experiential learning through	01 lecture
field work		
	Total No. of Lectures	36

- 1) Discrete Mathematics and it's Applications by Kenneth Rosen, Tata McGraw Hill (Seventh edition),2011.
- 2) Elements of Discrete Mathematics by C. L. Liu and D. P. Mohapatra, Tata McGraw Hill (fourth edition), 2013.

Course Code: 19CsMatU102 Course Name: Algebra

Teaching Scheme: TH: 3 Hours/Week

Examination Scheme: CIA: 40 Marks

Prerequisites: Matrices, Set theory, Properties of integers.

Course Objectives: To Study

- System of linear equations.
- Number theoretic problemsusing division algorithm for integers, Euler's theorem and Fermat's theorem.
- Congruence relation on the set of integers.
- Groups and types of groups.

Course Outcomes:

On completion of the course, student will be able to:-

- Solve system of linear equations.
- Find rank of a matrix.
- Find greatest common divisor of two integers.
- Check whether given set is a group or not.

Course Contents:

Chapter 1	Matrices and system of linear equations	14 lectures
	• Echelon form of a matrix.	
	• System of linear equations: Gauss elimination	
	method, Gauss –Jordan elimination method,	
	LU decomposition method.	
	• Rank of a matrix, Row rank, Column rank.	
Chapter 2	Divisibility of integers	12 lectures
	Division algorithm.	
	• Divisibility and its properties, prime numbers.	
	• Definition G.C.D. and L.C.M., Expressing	
	G.C.D. of two integers as a linear combination	

Credit: 02

End-Sem: 60 Marks

	of the two integers.	
	• Euclidean algorithm.	
	• Relatively prime integers, Euclid lemma and	
	its generalization.	
	 Congruence relations and its properties, 	
	Residue classes: Definition, Examples,	
	Addition and multiplication modulo n and	
	composition tables.	
	• Euler's and Fermat's theorems, Examples.	
Chapter 3	Binary operations and groups	09 lectures
	• Definition of binary operation, Examples,	
	properties of binary operations.	
	• Definition of Semigroup, Monoid, Examples.	
	• Definition of group, types of groups and	
	examples: finite and infinite groups,	
	Permutation groups, Subgroups, Cyclic	
	groups.	
Guidance / discussion	on course specific experiential learning through	01 lecture
field work		
	Total no. of lectures	36

1) Elementary Linear Algebra (Applications Version) by Howard Anton and Chris Rorres, John Wiley & Sons Inc. (Ninth Edition), 2005

2) Elements of Discrete Mathematics by C. L. Liu and D. P. Mohapatra, Tata McGraw Hill (fourth edition), 2013.

3) A First Course in Abstract Algebra by J.B. Fraleigh, Narosa Publishing house, New Delhi (Third edition), 1990.

Course Code: 19CsMatU103 Course Name: Mathematics Practical - I

Teaching Scheme: TH: 3 Hours/Week

Examination Scheme: CIA: 40 Marks

End-Sem: 60 Marks

Credit: 02

Prerequisite Courses: Discrete mathematics, Algebra.

Course Objectives:

- The student should be able to solve problems depending on contents in Discrete Mathematics and Algebra.
- To introduce Free and Open source Mathematical Software: Scilab.

Course Outcomes:

On completion of the course, student will be able to :-

- Understand the theoretical concepts in Discrete Mathematics and Algebra.
- Apply this knowledge in various courses of Computer Science.
- Solve problems of Linear Algebra using Scilab.

	List of practical	48 Lectures
Practical 1	Logic	
Practical 2	Lattices	
Practical 3	Boolean Algebra	
Practical 4	Counting Principles	
Practical 5	Recurrence Relations	
Practical 6	Introduction to Scilab-I	
Practical 7	Matrices and System of Linear Equations	
Practical 8	Divisibility of Integers-I	
Practical 9	Divisibility of Integers-II	
Practical 10	Binary Operations	
Practical 11	Groups	
Practical 12	Introduction to Scilab-II	

Note: There will be 4 lectures for each practical session per week.

Reference Books:

- 1) Discrete Mathematics and It's Applications by Kenneth Rosen, Tata McGraw Hill (Seventh edition), 2011.
- 2) Elements of Discrete Mathematics by C. L. Liu and D. P. Mohapatra, Tata McGraw Hill (fourth edition), 2013.
- 3) Elementary Linear Algebra (Applications Version) by Howard Anton, Chris Rorres. John Wiley & Sons Inc.(Ninth Edition), 2005

4) A First Course in Abstract Algebra by J.B. Fraleigh, Narosa Publishing house, New Delhi (Third edition), 1990.

5) Modeling and Simulations in Scilab/Scicos by Stephen Campbell, Jean Philippe Chanceller, RamineNikoukhah, Springer, 2006.

Course Code: 19CsMatU201 Course Name: Graph Theory

Teaching Scheme: TH: 3 Hours/Week

Credit: 02

Examination Scheme: CIA: 40 Marks

End-Sem: 60 Marks

Prerequisite: Set Theory.

Course Objectives: To Study

- Graphs, Types of graphs.
- Operations on graphs(Union, Intersection, Ring sum and Product).
- Connected graphs and its properties.
- Trees and its properties.

Course Outcomes:

On completion of the course, student will be able to:-

- Convert real life problems into graph theoretical models.
- Check whether two graphs are isomorphic or not.
- Apply basic operations on graphs and connected graphs.
- Identify Eulerian and Hamiltonian graphs.
- Find shortest spanning tree for a given graph.

Chapter 1	Graphs	6 lectures
	 Definition, Elementary terminologies and results, Graphs as Models. Special types of graphs. Isomorphism. Adjacency and Incidence matrix of a Graph. 	
Chapter 2	Operations on Graphs	4lectures
	 Subgraphs, Induced subgraphs, Vertex deletion, Edge deletion. Complement of a graph and self-complementary graphs. Union, Intersection, Ring sum and Product of graphs. 	

	• Fusion of vertices.	
Chapter 3	Connected Graphs	10 lectures
	 Walk, Trail, Path and Cycle: Definitions and elementary properties. Connected Graphs: Definition and properties. Distance between two vertices, Eccentricity, Center, Radius and diameter of a graph. Isthmus, Cutvetex: Definition and properties. Cutset, Edge-connectivity, Vertex connectivity. Weighted Graph and Dijkstra's algorithm. 	
Chapter 4	Eulerian and Hamiltonian Graphs	5 lectures
	 Seven bridge problem, Eulerian Graph: Definition and examples, Necessary and sufficient condition. Fleury's algorithm. Hamiltonian Graphs: Definition and examples, Necessary condition. Chinese postman problem and travelling salesman problem. 	
Chapter 5	Trees	10 lectures
	 Definition, Properties of trees. Center of a tree. Binary Tree: Definition, Examples and properties. Tree traversal: Ordered rooted tree, Preorder traversal, Inorder traversal and Postorder traversal, Prefix notation. Spanning Tree: Definition, Properties, Shortest spanning tree, Kruskal's algorithm. 	
Guidance / Dis	scussion on course specific experiential learning	01 lecture
through field w	ork	
	Total No. of Lectures	36

1) A First Look at Graph Theory by John Clark and Derek Holton, Allied Publishers (1st Indian edition), 1995.

2) Graph Theory with Applications to Computer Science and Engineering by Narsingh Deo, Prentice Hall of India (3rd Indian edition), 1986.

Course Code: 19CsMatU202 Course Name: Calculus

Teaching Scheme: TH: 3 Hours/Week

Credit: 02

Examination Scheme: CIA: 40 Marks

End-Sem: 60 Marks

Prerequisites: Sets, Relation, Function, Continuity, Differentiability.

Course Objectives: To Study

- Relations and types of relations.
- Functions and types of functions.
- Continuity, derivative and its geometrical interpretation.
- Applications of mean value theorems and successive differentiation.
- Taylor's theorem, Maclaurin's theorems and its applications.

Course Outcomes:

On completion of the course, student will be able to:

- Understand various properties of relations and functions.
- Understand concept and application of continuity, differentiability and mean value theorems.
- Use nth derivative of real valued function of real variable.
- Expand various elementary functions as power series.

Chapter 1	Relations and Functions	11 lectures
	• Relations, Types of relations, Equivalence relations.	
	Partial ordering.	
	• Equivalence Class, Properties and partition of a set.	
	• Transitive closure and Warshall's Algorithm.	
	• Digraph of a relation, Matrix representation and	
	composition of relations.	
	• Definition of a function as a relation, Types of	

	functions.	
Chapter 2	Continuity and Differentiability	12 lectures
	Continuity and properties of continuous functions	
	defined on [a, b] and examples.	
	• Differentiability.	
	• Intermediate value theorem.	
	• Rolle's mean value theorem.	
	• Lagrange's mean value theorem.	
	• Cauchy's mean value theorem.	
	• Verification of mean value theorems using	
	examples.	
	• L' Hospital's rule and it's application.	
Chapter 3	Successive Differentiation	06 lectures
	• The n th derivatives of standard functions.	
	• Leibnitz's theorem and applications.	
Chapter 4	Taylor's and Maclaurin's theorems	06 lectures
	• Taylor's and Maclaurin's theorems with Lagrange's	
	and Cauchy's form of remainders.	
	 Taylor's and Maclaurin's Series. 	
Guidance / Discuss	sion on course specific experiential learning through field	01 lecture
work		
	Total No. of Lectures	36

1) Discrete Mathematics Structure by Bernard Kolman, Robert Busby, Sharon Cutler

Ross, Nadeem-ur-Rehman, Pearson Education (6th Edition), 2009.

 Calculus and Analytical Geometry by Thomas Finny, Narosa Publishing House (6th edition), 1998.

Course Code: 19CsMatU203 Course Name: Mathematics Practical –II

Teaching Scheme: TH: 3 Hours/Week

Credit: 02

Examination Scheme: CIA: 40 Marks

End-Sem: 60 Marks

Prerequisite Courses: Graph Theory, Calculus.

Course Objectives: To solve problems depending on contents in Graph theory and Calculus.

Course Outcomes:

On completion of the course, student will be able to:

- Understand the theoretical concepts in Graph theory and Calculus.
- Apply this knowledge in various courses of Computer Science.

	List of Practical	48 lectures
Practical 1	Graphs and operations on graphs	
Practical 2	Connected graphs	
Practical 3	Eulerian and Hamiltonian graphs	
Practical 4	Trees-I	
Practical 5	Trees-II	
Practical 6	Introduction to Scilab-III	
Practical 7	Relations and Functions	
Practical 8	Continuity and Differentiability	
Practical 9	Mean value theorems and L'Hospital rule	
Practical 10	Successive differentiation	

Practical 11	Taylor's and Maclaurin's theorems	
Practical 12	Introduction to Scilab-IV	

Note: There will be 4 lectures for each practical session per week.

Reference Books:

1) A First Look at Graph Theory byJohn Clark and Derek Holton, Allied Publishers (1st Indian edition), 1995.

- 2) Graph Theory with Applications to Computer Science and Engineering by Narsingh Deo, Prentice Hall of India (3rd Indian edition), 1986.
- Discrete Mathematics Structure by Bernard Kolman, Robert Busby, Sharon Cutler Ross, Nadeem-ur-Rehman, Pearson Education (6th Edition), 2009.
- Calculus and Analytical Geometry by Thomas Finny, Narosa Publishing House (6th edition), 1998.

5) Modeling and Simulations in Scilab/Scicos by Stephen Campbell, Jean Philippe Chanceller, RamineNikoukhah, Springer, 2006.