Course Code: 19ScBioP101 Course Name: Advanced Biological Chemistry

Teaching Scheme: TH: 4 Hours/Week Examination Scheme: CIA: 50 Marks

Credit: 04 End-Sem: 50 Marks

Prerequisite:

• Basic Knowledge of Biochemistry.

Course Objectives:

- To develop a sufficient background for those students who wish to study more advanced biochemistry.
- To improve the ability of thinking in advanced biochemistry and protein chemistry fields.
- To create a basic understanding of the importance of enzymes and enzyme kinetics as cellular catalyst and also applications of enzymes in different fields. Also to familiarize the student with enzymes purification techniques.
- Basic knowledge on phytochemistry, secondary metabolites and their analysis.

Course Outcomes:

- Expertise in various biochemistry techniques.
- Understand enzyme kinetics and enzyme inhibition.
- At the end of the course, the students will have sufficient scientific understanding of the enzymology, protein chemistry and phytochemistry. This knowledge would be applicable in different industries

Course Contents		
Chapter 1	Protein Biochemistry I	14 lectures
	 Structure of Proteins: Primary, Secondary, Tertiary, quaternary. Study of protein motifs and protein families. Protein folding mechanisms and Pathways. Factors affecting stability- Molten globule, energy funnel, chaperons. Protein misfolding and diseases Protein Engineering and its applications Protein –protein interaction and protein –DNA interaction Structure –function relationship Therapeutic Proteins 	
Chapter 2	Protein Biochemistry II-Enzymes	14
	 Enzyme – Concept of active site, binding sites, Stereospecificity of enzyme and ES complex formation Enzyme Activity, Various factors influencing enzyme activity and 	

	 Enzyme inhibition Mechanism of enzyme action and Enzyme regulation.Multienzyme complexes Enzyme kinetics Rate of reactions, steady state enzyme kinetics, Michaelis- Menten Equation - form and derivation. Significance of Vmax and Km, K/cat. Bisubstrate reactions. Graphical procedures in enzymology. Lineweaver Burke's Plot, EdieeHofstee plot Clinical and Industrial Applications of enzymes -Enzyme Engineering, Biosensors (glucose oxidase, Cholesterol Oxidase),Antibodies as a biosensors, Enzymes :Diagnostics and therapeutic. 	
Chapter 3	Metabolomics Overview of metabolism, Integration of	10
	 Metabolism The Metabolome – Metabolic flux, Metabolic flux analysis Metabolic engineering – 2 eg. Polyketides Synthesis, Xenobiotics 	
Chapter 4	Phytochemsitry	10
	 Introduction to secondary Metabolism, primary metabolite as precursors of secondary Metabolite Pathways for secondary Metabolite Mevalonate pathway Shikimate Pathway Sloprene Unit Pathway (IPP) Study of secondary Metabolite Alkaloids Phenols Terpenes Extraction methods & Qualitative & Quantitative Analysis 	

- 1. Proteins: Biotechnology and Biochemistry, 1st edition (2001), Gary Walsch, Wiley, USA
- 2. Phytochemical Method, 3rd edition (1998), A.J. Harborne, Springer, UK.
- 3. Pharmacognosy, 14th edition, (2008), Dr. C. K. Kokate, A. P. Purohit, S. B. Gokhale, NiraliPrakashan, India.
- 4. Trease and Evans' Pharmacognosy, 16th edition (2009), William Charles Evans, Saunders Ltd. USA.
- Introduction to Practical Biochemistry, (2000), S. K. Sawhney, <u>Randhir Singh</u> Narosa, 2000. Practical Enzymology, 2nd edition (2011), HansBissWanger, Wiley-Blackwell, USA.
- 6. Biochemical Calculations, 2nd Ed., (1997) Segel Irvin H., Publisher: John Wiley and Sons, New York.
- 7. Enzymes: Biochemistry, Biotechnology & Clinical chemistry, (2001) Palmer Trevor, Publisher: Horwood Pub. Co., England.
- 8. Metabolic Engineering: Principles and Methodologies. (1998). Gregory N Stephanopoulos, Aristos A Aristidou, Jens Nielsen. Publisher: Academic Press, San Diego, US

- 9. Outlines of Biochemistry: 5th Edition, Erice Conn & Paul Stumpf ; John Wiley and Sons, USA
- 10. Fundamentals of Biochemistry. 3rd Edition (2008), Donald Voet& Judith Voet, John Wiley and Sons, Inc. USA
- 11. Lehninger, Principles of Biochemistry. 5th Edition (2008), David Nelson& Michael Cox, W.H. Freeman and company, NY.

- Outlines of Biochemistry: 5th Edition, (2009), Erice Conn & Paul Stumpf ; John Wiley and Sons, USA
 Biochemistry: 7th Edition, (2012), Jeremy Berg, LubertStryer, W.H.Freeman and company, NY
 An Introduction to Practical Biochemistry.3rd Edition, (2001), David Plummer, Tata McGraw Hill Edu.Pvt.Ltd. India
- 15. Biochemical Methods.1st , (1995), S.Sadashivam, A.Manickam, New Age International Publishers, India

Course Code: 19ScBioP102 Course Name: Cell and Molecular Biology

Teaching Scheme: TH:4Hours/Week Examination Scheme: CIA: 50 Marks

Credit: 04 End-Sem: 50 Marks

Prerequisite Courses:

- Basic of cell biology.
- Basic of molecular biology- structure of DNA,RNA

Course Objectives:

- To Study advances in information in cell biology
- To gain a better understanding of the cell, its function and interactions in an organism.
- To Study advances in information in molecular biology
- To gain a better understanding of the regulatory processes in the cell at molecular level

Course Outcomes:

On completion of the course, student will be able to-

- Obtain the latest developments in the field of cell biology and application of the information in understanding cell processes.
- Obtain the latest developments in the field of molecular biology and application of the information in understanding cell regulatory processes

Semester I

	Cell Biology	
Chapter 1	Cell structureand interactions	12 Lectures
	Cell structure and Organization	
	• Intracellular transport at molecular level.	
	 Cell signaling – Signaling at cell surface, signaling molecules, Hormones and receptors, Signaling pathways Signal transduction and second messengers. 	
	• Communication between cells and environment, Extracellular matrix and cell junctions, plasmodesmata.	
Chapter 3	Cell cycle and cell differentiation	12 Lectures
	• Cell cycle and its regulation.	
	• Cell differentiation in plants and animals including terminal cell differentiation.	
	• Cell transformation and etiology of cancer.	
	• Cell death, Role of hormones and growth factors in programmed cell death.	
	Molecular Biology	
Chapter 1	Genome structure and organization	8 Lectures
	Introduction to Prokaryotic and Eukaryotic Genome.	

	 Chromatin Organization Gene families, clusters, Pseudogenes, super-families Mobile DNA elements: Transposable elements in bacteria, IS elements, composite transposons, replicative and non- replicative transposons, Mu transposition, controlling elements in TnA and Tn10 transposition. SINEs and LINEs, retrotransposons. C- Value paradox and genome size, Cot curves, repetitive and Non-repetitive DNA sequences, Cot ¹/₂ and Rot ¹/₂ values, satellite DNA and DNA melting and buoyant density. 	
Chapter 2	DNA replication	4Lectures
	• DNA replication: DNA replication models, connection of replication to cell cycle, Reverse Transcriptase.	
Chapter 3	Gene expression in prokaryotes and Eukaryotes	12Lectures
	 Transcription in prokaryotes and eukaryotes. Chromatin remodeling in relation to gene expression, DNase hypersensitivity, DNA methylation. Regulation of transcription including transcription factors. Post-transcriptional processing and transport of RNA. Non coding RNAs. Organization and function of ribonucleoproteins (Ribonome concept) Components of protein synthesis, Mechanism of protein synthesis, Genetic code, Regulation of protein synthesis, Post translational modification 	
	Total Lectures	48

References: Cell Biology

1. Molecular Cell Biology. 7th Edition, (2012) Lodish H., Berk A, Kaiser C., KReiger M., Bretscher A., Ploegh H., Angelika Amon A., Matthew P. Scott M.P., W.H. Freeman and Co., USA

2. Molecular Biology of the Cell, 5th Edition (2007) Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, Peter Walter. Garland Science, USA

3. Cell Biology, 6th edition, (2010) Gerald Karp. John Wiley & Sons., USA

4. The Cell: A Molecular Approach, 6th edition (2013), Geoffrey M. Cooper, Robert E. Hausman, Sinauer Associates, Inc. USA.

References: Molecular Biology

1. Genes XI, 11th edition (2012), Benjamin Lewin, Publisher - Jones and Barlett Inc. USA

2. Molecular Biology of the Gene, 6th Edition (2008), James D. Watson, Tania Baker, Stephen P. Bell, Alexander Gann, Michael Levine, Richard Lodwick. Pearson Education, Inc. and Dorling Kindersley Publishing, Inc. USA

3. Molecular Biology, 5th Edition (2011), Weaver R., McGrew Hill Science. USA

4. Fundamentals of Molecular Biology, (2009), Pal J.K. and Saroj Ghaskadbi, Oxford University Press. India

5. Molecular Biology: genes to proteins, 4th edition (2011), Burton E Tropp, Jones & Bartlett Learning, USA .

Course Code: 19ScBioP103 Course Name: Genetics & Immunology

Teaching Scheme: TH: 4 Hours/Week Examination Scheme: CIA: 50 Marks Credit: 04 End-Sem: 50 Marks

Prerequisite Courses:

• Basic of Genetics and Immunology

Course Objectives:

- To Study advanced Genetics and Immunology
- To gain a better understanding of the Applications of Genetics and Immunology

Course Outcomes:

On completion of the course, student will be able to-

• Obtain the latest developments in the field of Genetics and Immunology and applications of the same in diagnostics.

Course Contents		
Chapter 1	Basics of Genetics	5 lectures
	• Mendelian Genetics: Laws of heredity and modifications of monohybrid interactions (Incomplete dominance, Co-dominance and Over dominance, Multiple alleles, Lethal genes)	
	• Gene interactions : dominant and recessive epistasis, duplicate genes, Complementary genes and dominant & recessive interactions,	
	• Pleiotropy.	
Chapter 2	Population genetics& human genetics	5 lectures
	 Population genetics: Hardy –Weinberg principle and its applications. Human genetics : Basics of Clinical genetics, testing and diagnosis of human genetic disorders 	
Chapter 3	Plant genetics	6 lectures
	 Genetics of plant breeding- Genetic basis and mechanisms of pre- and post-zygotic incompatibility Genetics of somaclonal variations, apomicts& androgenic plants 	
Chapter 4	Important model systems in Genetics	8 lectures
	 Drosophila, C.elegans, Zebrafish Arabidopsis 	
Chapter 5	Basics of Immunology	6 lectures

	 Overview of immune system: Cells, Organs and Tissues of immune system. Types of Immunity - Innate immunity, Acquired immunity Protective and Destructive Autoimmunity, molecular mimicry Parasitic immunology Transplant immunology 	
Chapter 6	Complement System and Hypersensivity	6 lectures
	 Complement system: Components of Complement system Three pathways of complement activation Types of Hypersensitivity 	
Chapter 7	Antigen – Antibody reactions	6 lectures
	 Applications in Diagnostics. Techniques in molecular immunology Hybridoma technology (Monoclonal antibody) Antibody engineering, Chimeric antibodies, Phage display 	
Chapter 8	Vaccine development	6 lectures
	Recombinant vaccine,Combined and polyvalent vaccines	
	Total Lectures	48

1. Williams EG, Clarke AE, Bruce Knox R (1994) – Genetic control of self incompatibility and reproductive development in flowering plants (Kluwer Academic Publ, Netherlands)

2. Franklin-Tong VE (2008) – Self incompatibility in flowering plants – evolution, diversity and mechanisms (Springer, Berlin Heidelberg)

3. Principles of plant genetics and breeding, 2nd edition(2012), Acquaah G, Wiley -Blackwell, UK

4. Developmental genetics, 1st edition, (2006) Miglani GS, IK International, India

5. Savidan Y, Carman JG, Dresselhaus T Eds (2001) - The flowering of apomixis: From mechanisms

to genetic engineering (CIMMYT, IRD, European commission DG VI (FAIR)

6. Plant breeding: principles and methods, 11th edition (2009), B D Singh, Kalyani Publisher, India.

7. iGenetics, 3rd edition (2011), Peter Russel, Benjamin Cummings, USA.

8. Strickberger MW (2006) - Genetics (Prentice Hall, India)

9. Hartl DL, Jones EW (2001) - Genentics: analysis of genes and genomes (Jones and Bartlett, Massachusetts)

10. Kuby immunology, Judy Owen, Jenni Punt, Sharon Stranford., 7th edition (2012), Freeman and Co., NY

11. Textbook of basic and clinical immunology, 1st edition (2013), Sudha Gangal and ShubhangiSontakke, University Press, India

12. Immunology, 7th edition (2006), David Male, Jonathan Brostoff, David Roth, Ivan Roitt, Mosby, USA.

Course Code: 19ScBioP104 Course Name: Environmental Biotechnology (T+P)

Teaching Scheme: TH: 2 Hours/Week Examination Scheme: CIA: 50 Marks

Credit : 04 (2+2) End-Sem : 50 Marks

Prerequisite Courses:

• Knowledge of Environment Science up graduation

Course Objectives:

- To Study the current scenario of environment and its effect on abiotic and biotic factors
- To learn advance techniques to slove environmental problems

Course Outcomes:

On completion of the course, student will be able to-

• Understand the environment and its ever changing climate so raising new problems and then finding the solution of it

Course Contents		
Chapter 1	Energy and Environment	1 Lectures
	• Natural energy resources and their exploitation (Conventional)	
Chapter 2	Pollution and Environment	4 Lecture
	 Introduction to environmental components, future scenarios of the global environment Impact on environment (biotic & abiotic), transport and diffusion, monitoring, quality standards, carbon footprints causes and consequences of climate change (global warming, Ozone hole, Sea level rise), 	
Chapter 3	Waste management	5 Lectures
	 Waste water technology, Activated sludge process, Removal of organic and inorganic pollutants Solid waste management: Sources and types, Impact of solid waste disposal, Recycle, Reuse and Recovery solutions 	
Chapter 4	Bioremediation Removing Pollutants from Environments	5 Lectures

	 Introduction to use of biological agents in pollution control, Advantages, limitations and Principle, types of Bioremediation and factors affecting: Natural, Engineered, <i>Ex-situ</i> and <i>in- situ</i> Xenobiotic degradation,: Biomining, Biomethanation, Bioleaching, Bio plastic technology Biological Fertilizer and pesticides. Principles and methods in: Bioaugmentation Biostimulation Phytoremediation 	
Chapter 5	Environment monitoring management	5 Lectures
	 Remote sensing and GIS :Principal, and objectives, Energy sources for remote sensing, and GIS Types of remote sensing Applications- Agricultural, Forestry, Water Resource, Urban Planning, Wild life Ecology, Environmental Informatics Environmental Impact Assessment: Introduction, Objectives, Classification, Guidelines. Case Study. Environmental Audit: Introduction, Types, General Methodology, International and Indian Eco-standards ISO14000 series overview. 	
Chapter 6	Environmental Laws and Policies	4 Lectures
	 International: in the view of global concerns, objectives of laws/regulations, importance Stockholm conference, Nairobi declaration, Rio conference, India: The water Act. 1974, The Air Act 1981, The Environment Protection Act 1986- Their important objectives 	
	Total Lectures	24

- 1. Alternative Energy: S. Vandana; APH Publishing Corporation
- 2. Bio-Energy Resources: Chaturvedi; Concept Pub.
- 3. Environmental Pollution, N. Manivasakam
- 4. Agenda 21: Guidelines for Stakeholders Patwardhan&Gunale
- 5. Air Pollution (2004) HVN Rao and M N Rao Tata McGraw-Hill
- 6. Air Pollution Control CP Mahajan, Capitol Publishing Co
- 7. Air Pollution Engineering Manual (2000) Wayne T Davis (editor), Air and Waste Management Association, Wiley Interscience
- 8. An Introduction To Geographic Information Technology (2009) SuchandraChoudhury I K International Pvt Ltd.
- 9. Bioremediation (1994) Baker, K.H and Herson, D.S.McGraw Hill, Inc. New York
- 10. Concepts and Techniques of Geographic Information Systems (2009)C.P.Lo.Albert and K.W.Yeung
- 11. Environment Impact Assessment (1996) Larry W. Canter McGraw-Hill Book Company
- 12. Environmental Audit (2002) Mhaskar A.K. Enviro Media Publications
- 13. Environmental biotechnology(2010) RanaRastogi Publications
- 14. Environmental Protection and Laws (1995) Jadhav and BhosaleV.M.Himalaya publishing House.
- 15. Environmental Science (2011) Santra S.C. New Central Book Agency
- 16. Remote sensing of the environment (2000) John R. Jensen Dorling Kindersley India Pvt. Ltd
- 17. Textbook of Remote sensing and GIS (2006) M. Anji Reddy 3rd

Course	Contents	:	Practical
Course	Contento	٠	I I WOULCHI

Sr. No.	Title	No of
		practicals
1	Removal and estimation of pollutant from soil/water samples by biostimulation/ phytoremediation	2
2	Genotoxicity assay on polluted water- Onion root tip and pollen	2

	germination assay.	
3	Qualitative and quantitative estimation of biodegradation of pesticide/ insecticide/fungicide.	2
4	Estimation of Total suspended solids of waste water	1
5	Determination of dissolved oxygen concentration of water sample	1
6	Determination of chemical oxygen demand (COD) of sewage sample.	1
7	Determination of biological oxygen demand of sewage sample	1
8	Acquisition of "Google Earth" images for the known and unknown area for land use - land cover mapping.	1
9	Review on EIA case study.	1
	Total Lectures	24

- 1 An Introduction To Geographic Information Technology (2009) SuchandraChoudhury I K International Pvt Ltd.
- 2 Bioremediation (1994) Baker, K.H and Herson, D.S.McGraw Hill, Inc. New York
- 3 Environment Impact Assessment (1996) Larry W. Canter McGraw-Hill Book Company
- 4 Environmental biotechnology(2010) RanaRastogi Publications
- 5 Environmental Science (2011) Santra S.C. New Central Book Agency
- 6 Remote sensing of the environment (2000) John R. Jensen Dorling Kindersley India Pvt. Ltd Textbook of Remote sensing and GIS (2006) M. Anji Reddy 3rd

Course Code: 19ScBioP105 Course Name: Food Biotechnology

Teaching Sch	eme: TH:	4 Ho	urs/Week
Examination	Scheme:	CIA:	50 Marks

Credit : 04 End-Sem : 50 Marks

Prerequisite Courses:

• Knowledge of Biotechnology upto graduation

Course Objectives:

- 1. To provide knowledge about techniques used in plant, animal and microbial biotechnology
- 2. To introduce students to new developments in the field of food biotechnology

Course Outcomes:

On completion of the course, student will be able to-

• To understand the role of biotechnology in Food processing and preservation

Course Conte	nts	
Chapter 1	Importance of Biotechnology in food processing	6 lectures
	 Recombinant DNA Techniques Plant and Animal Biotechnology Genetically modified plants and animals- Applications in Food Production 	
Chapter 2	Microbial biotechnology	5 lectures
	 Genetically modified microorganisms Fermentation Technology- Use of microbes in the production of alcohols (Beer, Wine), bread, Yogurt, Organic acids (Acetic acid, Lactic acid, Citric acid), Vitamins Pigments, Flavors, sweeteners 	
Chapter 3	Enzyme Technology	5 lectures
	 Use of Biotechnology for the production of enzymes- Amylases, Proteases, Lipases, Cellulases, Pectinases. Applications of these enzymes in food processing Applications of Biotechnology in food waste management and development of value added products 	
Chapter 4	Nanobiotechnology	6 lectures
	 Use of nanoparticles for delivery of bioactive constituents, nanoencapsulation, nanopackaging, nanosensors for detection of pesticides & pathogens Applications of Nutrigenomics in the food industry Ethical Concerns, Safety and Regulatory Issues of biotechnological products 	
Chapter 5	Prebiotics and Probiotics	8 lectures

	Total Lectures	48
	 Food Laws and Standards: National and International food laws, Mandatory and voluntary food laws. FSSAI Indian Food Regulations and Certifications: Food Safety and Standards Act, FSSAI Rules, common adulterants in foods, Duties and responsibilities of Food Safety Authorities 	
Chapter 8	Food Laws and FSSAI	6 lectures
	 Role of QC and QA Quality: Quality Control, Quality Assurance, Concepts of quality control and quality assurance functions in food industries. Quality Improvement Total Quality management : principals of TQM, stages in implementation, TQM road map. Quality improvement tools, customer focus, cost of quality 	
Chapter 7	Role of QC and QA Quality,	6 lectures
Cnapter 6	 Major nutraceuticals and their health applications- Bioactive peptides, Curcumin, Conjugated Linoleic acid, Glucosamine, Carnitine, Creatine Safety and adverse effects associated with the consumption of functional foods and nutraceuticals Recent trends in food formulation; antioxidant rich food products; concepts for formulation of foods for drought and disaster afflicted; defence services, sportsmen, space food 	o lectures
Chanter 6	required for therapeutic efficacy Nutraceuticals	6 lacturas
	 Traditional Fermented Foods as sources of Probiotics Strains of microorganisms used as probiotics Role in Health and Disease, Mechanism of Action, Levels of Probiotics 	
	 Food Sources- Prebiotics [Dietary fibre, Oligosaccharides (Galacto oligosaccharides, Fructo oligosaccharides), Resistant Starch, Sugar alcohols], 	

1. Anthony Pometto (2005). Food Biotechnology, 2nd Edition. CRC Press

2. Byong H Lee (2014). Fundamentals of Food Biotechnology, 2nd Edition, Wiley- Blackwell

3. Goldberg, I 1994. Functional Foods: Designer Foods, Pharma foods, Nutraceuticals Chapman & Hall

4. Gibson, GR and William, CM. 2000. Functional foods - Concept to Product. Woodhead publishing.

5. Aluko, R.E. (2012). Functional Foods and Nutraceuticals. Springer

6. Inteaz Alli. 2004. Food Quality Assurance: Principles and Practices. CRC Press, Boca Raton, FL, USA.

7. Ronald H. Schmidt and Gary E Rodrick. 2003. Food Safety Handbook. John Wiley & Sons, Inc., Hoboken. New Jersey, USA.

8. R.E. Hester and R.M.Harrison. 2001. Food Safety and Food Quality. Royal Society of Chemistry, Cambridge, UK

Course Code : 19ScBioP106 Course Name: LAB Course 2: Exercises in Advanced Biological Chemistry and Immunology

Teaching Scheme: 4 Hours/Week Examination Scheme: CIA : 50 Marks

Credit: 02 End-Sem : 50 Marks

Prerequisite Courses:

• Basics of isolation, purification and chromatography techniques

Course Objectives:

- To develop a sufficient background for those students who wish to study more advanced biochemistry.
- To improve the ability of thinking in advanced biochemistry fields.
- To create a basic understanding of the importance of enzymes and enzyme kinetics as cellular catalyst and also applications of enzymes in different fields.
- Basic knowledge on bioactive compounds and secondary metabolites

Course Outcomes:

On completion of the course, student will be able to-

- Expertise with various biochemistry techniques
- Ability of thinking in biochemistry fields

Semester I

Practical 1	Protein Biochemistry I	3 P
	Extraction, purification and characterization of	
	: Beta galactosidase	
	Assay of enzyme activity	
	Isolation and precipitation and dialysis	
	Enzyme Purificationby using Column	
	Chromatography-	
	Gel filtration/ Ion exchange	
	Native & SDS PAGE	
Practical 2	Protein Biochemistry II Enzymes	4P
	Enzymology : Study of Enzyme Kinetics of beta Galactosidase	
	Effect of time on enzymatic reaction	
	Effect of various substrate concentration on the rate of enzymatic reaction	
	Effect of pH and temperature on the rate of enzyme reaction	
	Determination of K m and Vmax	
	study of Inhibition of enzyme activity	
Practical 3	Phytochemistry	2P

	Phytochemical Methods Extraction Methods Qualitative detection _TLC Quantitative estimation of phytoconstituents	
Practical 4	ELISA	1P
	QualitativeQuantitative	
Practical 5	Immunodiffusion	1P
	Radial immunodiffusion	
Practical 6	Immunoelectrophoresis	1P
	Rocket- immunoelectrophoresis	

Course Code: 19ScBioP107 Course Name: Lab Course 2 Exercises in Cell and Molecular Biology

Teaching Scheme: P: 4Hours/ Week two batches Examination Scheme: CIA: 50 Marks

Credit: 02 End-Sem: 50 Marks

Prerequisite Courses:

- Basic techniques of cell biology
- Basic techniques like DNA isolation and electrophoresis

Course Objectives:

- To Study advance techniques of cell biology –density gradient centrifugation, osmo fragility, apoptosis.
- To learn RNA isolation and separation, DNA damage and repair systems, DNA denaturation kinetics

Course Outcomes:

On completion of the course, student will be able to-

• Design innovative /advanced cell and molecular biology practicals

Semester I

Course Contents		
Practical 1	DNA damage	1P
	Comet assay	
Practical 3	RNA isolation and purification	3P
	RNA isolation, gel electrophoresis and oligo dT purification of mRNA	
Practical 4	Study of gene regulation – operon model	1P
	Use of <i>E.coli</i> for inducing <i>lac</i> operon	
Practical 5	DNA renaturation kinetics	1P
	To study the Tm of DNA and its renaturation kinetics using spectrophotometry	
Practical 6	Study of cell types	1P
	Study of different cell types in macerated tissue.	
Practical 7	Cell organelle isolation and purification	1P
	Cell organelle isolation,Purification by density gradient centrifugation.Its characterization	
Practical 8	Study of cell permeability and osmosis	1 P
	Study of cell permeability and osmotic fragility by RBC's	
Practical 9	Study of extracellular matrix	1P
	Study of extracellular matrix using growing of cells in presence of cell adhesion molecules.	
Practical 10	Study of cell cycle arrest	1P
	Study of cell cycle arrest using colchicine	

15

Practical 11	Study of apoptosis	1P
	Demonstration of apoptosis using suitable model systems	

Course Code: 19ScBioP201 Course Name: Genetic Engineering

Teaching Scheme: TH: 4Hours/Week Examination Scheme: CIA: 50 Marks

Credit: 04 End-Sem: 50 Marks

Prerequisite Courses:

Basic techniques of rDNA technology **Course Objectives:**

- To Study important techniques of genetic engineering
- To learn basic and advance concepts used in genetic engineering

Course Outcomes:

On completion of the course, student will be able to-

• design novel techniques and experiments in genetic engineering

Semester II

Chapter 1	Introduction to Genetic Engineering	5 Lectures
Chapter 2	Introduction to Genetic Engineering and gene cloning. DNA modifying enzymes and restriction enzymes for Genetic engineering, Vectors in gene cloning-Plasmid, Cosmid, Phages, Phasmids, Advanced cloning vectors- BAC, YAC, PAC Transformation and transfection	5 Lectures
	Transformation and transfection: Various expression vectors in bacteria and eukaryotes- Yeast, Baculovirus, Mammalian cells.	Jectures
Chapter 3	Analytical techniques in GE	15 Lectures
	 PCR – design and optimization, Types of PCR- Inverse, Nested, Reverse Transcription-PCR, Hot Start PCR, Quantitative PCR used to engineerDNA. Genomic and cDNA library: Screening and selection. 	
Chapter 4	DNA sequencing	7 lectures
	Maxam-Gilbert method, Sanger's Dideoxy chain termination method, Automated DNA sequencing methods. Human genome sequencing and mapping Genetic and Physical mapping techniques.	
Chapter 5	Application of G.E.	4 lectures
	Genetic diseases-diseases-Detection and Diagnosis, Gene therapy – <i>ex vivo</i> , <i>in vivo</i> , viral and non-viral gene delivery systems.	

Chapter 6	DNA marker technology	4 lectures
	DNA marker technology in plants,	
	DNA fingerprinting and DNA profiling.	
Chapter 7	Transgenic animals and Bio-pharming	5 lectures
	Genetically engineered biotherapeutics and	
	vaccines and their manufacturing. Transgenic	
	animals and Bio-pharming.	
Chapter 8	Biosafety regulations	3 lectures
	Principles of Biosafety regulations	
	Total Lectures	48

1. From Genes to Genomes, 2nd edition, (2008), J.Dale and M.Schantz, John Wiley & Son Ltd.USA

2. Gene Cloning and DNA Analysis: an introduction, 6th edition, (2010) T. A. Brown, Wiley-Blackwell Publisher, UK

3. From Gene to Clones; Introduction to gene technology, 4th edition, (2003), E. Winnacker, Panima Publisher, India

4. Molecular Biology Problem solver: A laboratory guide (2004), A. Gerstein, A John Wiley & Sons, Inc., Publication, USA.

5. Molecular Biology of the Gene, 6th Edition (2008), James D. Watson, Tania Baker, Stephen P. Bell, Alexander Gann, Michael Levine, Richard Lodwick, Pearson Education, Inc. and Dorling Kindersley Publishing, Inc. USA

Course Code:19ScBioP202 Course Name: Principles of Bacteriology and Virology

Teaching Scheme: TH: 4Hours/Week	
Examination Scheme: CIA: 50 Marks	

Credit 04 End-Sem: 50 Marks

Prerequisite Courses:

• Study of basic microbiology in UG and basic concepts of virology

Course Objectives:

- To Study in detail the taxonomy and morphology of microorganisms
- To learnthe bacterial classification systems along with its characteristics
- To learn the viral classification systems along with its characteristics

Course Outcomes:

On completion of the course, student will be able to-

- Study the proper classification systems of bacteria and classify the organisms using Bergey's manual.
- In detail knowledge of biochemical cycles operative in microbes.
- Study the proper classification systems of viruses
- Knowledge of methods of Viral diagnosis

Semester II

	Bacteriology	
Chapter 1	Bacterial Diversity and Taxonomy:	6 Lectures
	 Microbial diversity-Tools used along with the bacterial morphological features Taxonomy and nomenclature of bacteria, Types of bacterial classification systems, Bergey's Manual – in detail 	
Chapter 2	Microbial Physiology:	10 Lectures
	 Chemotaxis, Bioluminescence, Microbial toxins, Physiological and genetic aspects of sporulation and spore germination Microbial reserve compounds, Microbial stress responses Mechanism of action of antibiotics and its resistance Quorum sensing, Microbial fuel cells. A brief account of genetic recombination in bacteria (transformation, conjugation and transduction). 	
Chapter 3	Microbial Metabolism:	8 Lectures
	 Aerobic Respiration: Oxidativephosphorylation and its significance, Energy generation in all groups of chemolithotrophs. Anaerobic Respiration: Biochemistry of methanogenesis and ammonia oxidation 	
	Virology1	
Chapter 1	Introduction to viruses:	6 Lectures
	 General properties of viruses Morphology and 	

	 ultrastructure of Viruses Classification of viruses: ICTV system, Baltimore system Viral replication: DNA and RNA viruses with example, Bacteriophages 	
Chapter 2		10 Lectures
	 General idea about cyanophages, actinophages and mycophages and viruses of insects. Baculovirus System for insect cell lines, Subviral particles- Prions, virusoids, satellite viruses. Purification and maintenance of viruses 	
Chapter 3	Types of viral Infections :	8 Lectures
	 Acute and persistent infections Epidemiology Emerging viral diseases and Current outbreaks Animal and Poultry viruses Plant viruses Applications: Viral Diagnosis and Antivirals 	
	Total Lectures	48

References: Bacteriology

- 1. Introduction to Microbiology. 3rd Edition, (2004), Ingraham JL and Ingraham CA. Thomson Brooks / Cole.
- 2. Brock's Biology of Microorganisms. 11th Edition, (2006). Madigan MT, Martinko JM. Pearson Education Inc., USA
- 3. Fundamental Principles of Bacteriology. 7th Edition, (1971) Salle AJ. Tata MacGraw Publishing Co. India
- 4. Microbiology: An introduction, 5th edition,(1992), Tortora, G.J., Funke B.R., Case C.L, Benjamin Pub.Co. NY
- 5. Microbiology, 4th edition (1990), Davis B.D. ,Debacco, J.B. Lippincott Co. NY
- 6. Zinsser, W, 1976, Microbiology Edition, W.K Jklik, NY
- 7. Medical Bacteriology, 14th edition, (1988), Dey, N.C and Dey, TK., Allied Agency, India.
- 8. Text book of microbiology 5th edition (1996), Ananthnarayana, R. and C.E., JayaramPanakar, Orient Longman.
- 9. General Microbiology, 5th edition (1987), Stanier R.Y., Adelberg E.A. and Ingraham J. L. Macmillan Press Ltd.

References: Virology

- 1. Principles of Virology 3rd edition, (1999), Flint Jane. S., ASM (American Society of Microbiology) Press Publisher, 2 volumes. USA.
- Field's Virology 2 volumes, 5th edition, (2006), Bernard.N. Fields, Lippincott and Williams Wilkins, USA.
- 3. Understanding viruses. Teri Shores, 3rd edition, Jones & Bartlett Publishers.

Course Code: 19ScBioP204 Course Name: Agriculture Biotechnology

Teaching Scheme: TH:4 Hours/Week Examination Scheme: CIA : 50 Marks Credit : 04 End-Sem : 50 Marks

Course Code: 19ScBioP205 **Course Name: Medical Biotechnology**

Teaching Scheme: TH:4 Hours/Week Examination Scheme: CIA : 50 Marks

Credit : 04 End-Sem: 50 Marks

Prerequisite :

Basic knowledge of Biotechnology, Biochemistry and Microbiology •

Course Objectives:

- To develop a background for those students who wish to study more advanced in the field of medical • biotechnology.
- To improve the ability of thinking in advanced in different areas like research, pharma industry

Course Outcomes:

Student will get exposure to various areas like Genetic Diseases, Molecular basis of diseases, and • also various therapies.

•Expertise in different areas of Medical biotechnology which includes Gene therapy, Stem cell technology,

• Also get exposure to various disease diagnosis areas.

Semester II

Course Contents		
Chapter 1	Molecular basis of disease	12 lectures
Chapter 2	 Introduction to Chromosomal Disorders and Structural Disorders with examples Classifications of Genetic diseases Single Gene disorders Sickle cell anaemia and Thalassemia, polygenic diseases eg Type I diabetes, Alzhimer Disease Infectious disorders: hepatitis & HIV Molecular pathology of genetic diseases Techniques for Genetic Diseases Prenatal diagnosis: Indications of prenatal diagnosis Diagnosis using protein and enzyme markers : Enzyme probes Glucose oxidase, Monoamine oxidase. Diagnosis using Monoclonal antibodies – hormonal disorders & infectious diseases DNA/RNA based Diagnosis: DNA probes hepatitis, HIV Biosensors in clinical diagnosis Microarray Technology for disease diagnosis Genetic Councelling 	12 lectures
Chapter 3	Therapeutics and Disease Management	12 lectures
	• Gene Therapy: ex vivo & in vivo gene therapy	

	 Strategies of Gene therapy:Gene augmentation, antisense therapy, ribozymes. Vectors used in gene therapy and synthetic vectors Gene therapy trials: ADA deficiency, Cystic fibrosis, HIV Enzyme therapy: Gauchers disease, Hormone replacement therapy: Diabetes DNA based Vaccines: Subunit Vaccines and Attenuated Vaccines. 	
Chapter 4	Regenerative Medicine, Nanotechnology, Drug delivery systems.	12 lectures
	 Stem cells in therapy -embryonic & adult stem cells, Characteristics & properties of stem cells. Potential use of stem cells Cell & Tissue engineering Bioartificial organs (liver,Blood cells, skin) Nanomaterial in medicine: DNA based nano devices Drug delivery carriers & controlled release mechanisms 	
	Total Lectures	48

References Books:

- 1) Introduction to Human Molecular genetics- J J Pasternak, John willey Publications
- 2) Human Molecular genetics Mc Conkey
- 3) Medical Biotechnology-Pratibha Nallari V Venugopal Rao Oxford Press
- 4) Medical Biotechnology-1st edition- Juditpongracz, Mary Keen
- 5) Medical Biotechnology-by Bernald Glick, Terry L Delovitch, Cheryl L Pattern ASM press 2014.
- Molecular Biotechnology- Principles and Applications of Recombinant DNA, 4th Edition by Bernald Glick Cheryl L Pattern
- 7) Medical Biotechnology first edition by Trivedi P C Avishkar Publisher
- 8) Medical Biotechnology Principle and Applications by Kun L Y world Science Publications.
- 9) Methods of Biotechnology and Bioengineering by Vyas CBS publications 2004
- 10) Stem Cell technology by Marshak et al CSHL publications

Course Code: 19ScBioP206 Course Name: LAB Course 3: Exercises in Genetic Engineering and Plant Biotechnology

Teaching Scheme: P 3Hours/Week Examination Scheme: CIA : 50 Marks Credit: 02 End-Sem : 50 Marks

Prerequisite Courses:

• Basics of rDnA techniques and plant tissue culture

Course Objectives:

• To learn advanced techniques in GE and Plant Biotechology

Course Outcomes:

On completion of the course, student will be able to-

• Use the technique for innovative learning

Course	Contents

Practical 1		1P
	Study of transformation technique and study of transformants	
Practical 2		1P
	Study of PCR and analysis of PCR product	
Practical 3		1P
	Southern blotting and hybridization technique	
Practical 4		1P
	Study of sequencing technique: Analysis of sequencing gels	
Practical 5		1P
	RFLP technique : Study of DNA fingerprinting technique	
Practical 6		1P
	DNA marker technology in plants: RAPD	
Practical 7		1P
	Chlorella/Spirulina culture establishment and study of its growth using suitable parameters	
Practical 8		1P
	In vitro induction of somatic embryogenesis	

Practical 9		1P
	Induction of androgenesis in vitro	
Practical 10		1P
	Protoplast isolation and fusion	
Practical 11		1 P
	Micropropagation : Initiation and multiplication	
Practical 12		1P
	Initiation of suspension culture and identification of common secondary metabolite production	