Progressive Education Society's Modern College of Arts, Science and Commerce,

Shivajinagar, Pune 5 (An Autonomous College Affiliated to Savitribai Phule Pune University)

Framework of Syllabus

For M.Sc. Physics

(2019-20 Course)

(with effect from 2019-20)

Semester 1 (First Year)

Course Type	Course Code	Course / Paper Title	Hours / Week	Credit	CIA	End Sem Exam	Total
CCT-1	19ScPhyU101	Mechanics	03	02	40	60	100
CCT-2	19ScPhyU102	Modern Physics	03	02	40	60	100
CCP-1	19ScPhyU103	Practical Course-I	03	02	40	60	100
		Total Credits	-	06			

Semester 2 (First Year)

Course	Course Code	Course / Paper Title	Hours /	Credit	CIA	End Sem	Total
Туре			Week			Exam	
CCT-9	19ScPhyU201	Heat and Thermodynamics	03	02	40	60	100
CCT-10	19ScPhyU202	Electricity and Magnetism	03	02	40	60	100
CCP-5	19ScPhyU203	Practical Course-II	03	02	40	60	100
		Total Credits	-	06			

Course Code: 19ScPhyU101 Course Name: Mechanics and Properties of Matter

Teaching Scheme: TH: 3 Lectures /Week Examination Scheme: CIA: 40 Marks

Credit: 02 End-Sem: 60 Marks

Prerequisite Courses:

- Familiarity with 10+2 level physics syllabus
- Familiarity with basic concepts of Motion, work and Energy, Fluid Mechanics, Properties of Matter **Course Objectives:**
 - To Study and. Demonstrate an understanding of Newton's laws and applying them in calculations of the motion of simple systems.
 - Use the free body diagrams to analyse the forces on the object.
 - Understand the concepts of energy, work, power, the concepts of conservation of energy and be able to perform calculations using them.
 - Understand the concepts of elasticity and be able to perform calculations using them.
 - To learn/Understand the concepts of
 - 1. Surface tension and viscosity and be able to perform calculations using them. .
 - 2. Use of Bernoulli's theorem in real life problems.
 - 3. Demonstrate quantitative problem solving skills in all the topics covered.

Course Outcomes:

On completion of the course, student will be able to-

- Understand the Applications of Bernoulli's Principle.
- Understand the surface Tension and Viscosity of Fluid, Law of Energy Conservation, Applications of Elasticity

Semester I

se contents		
Chapter 1	Motion	09 Lectures
	 Introduction to Motion, Types of Motion Displacement, Velocity, Acceleration, Inertia Newton's Laws of Motion with their explanation Various types of forces in nature, Frame of References (Inertial and Non inertial) Laws of Motions and its real life applications Problems Experiential Learning 	
Chapter 2	Work and Energy	07 Lectures
	 Kinetic Energy Work Energy Theorem Work done with Constant Force, Work done with Varying Force (Hook's Law) 	

Course Contents

	Conservative and Non conservative forces	
	• Potential Energy	
	• Law of Energy Conservation	
	Gravitational Potential Energy	
	• Problems	
	Experiential Learning	
Chapter 3	Fluid Mechanics	08 Lectures
•	Concept of Viscous force and Viscosity	
	• Coefficient of Viscosity	
	• Steady and Turbulent flow	
	• Reynolds number	
	Equation of Continuity	
	Bernoulli's Principle	
	Applications of Bernoulli's Principle (Ventury	
	Meter. Pitot Tube)	
	Applications of Viscous Fluids	
	Problems	
	Experiential Learning	
Chapter 4	Properties of Matter	12 Lectures
	A) Fluids (4 Lectures) :	12 Ecctures
	Surface Tension	
	Angle of Contact	
	 Factors affecting on Surface Tension 	
	 Jacquer's Method for determination of Surface 	
	Tension	
	Applications of Surface Tension	
	B) Solids (8 Lectures):	
	Stress and Strain	
	 Hook's Law and Coefficient of Elasticity 	
	 Young's Modulus Bulk Modulus Modulus of 	
	Rigidity	
	Work done during Longitudinal Strain Volume	
	Strain Shearing Strain	
	 Poisson's Ratio 	
	Relation between three Elastic Moduli	
	Applications of Flasticity	
	Problems	
	Fyneriential Learning	
	Total Lectures	36

References

- 1. Physics:Resnick, Halliday & Walker 9/e, Wiley
- 2. Mechanics: D. S. Mathur, S. Chand and Company, New Delhi.
- 3. Elements of Properties of Matter: D. S. Mathur, S. Chand, New Delhi
- 4. Concepts of Physics: H. C. Verma, Bharati Bhavan Publisher
- 5. Mechanics: D. S. Mathur, Revised by P. S. Hemne, S. Chand and Company, New Delhi.

Course Code: 19ScPhyU102 Course Name: Modern Physics

Teaching Scheme: TH: 3 Lectures /Week Examination Scheme: CIA : 40 Marks

Credit : 02 End-Sem : 60 Marks

Prerequisite Courses:

- Familiarity with 10+2 level physics syllabus
- Familiarity with basic concepts of calculus

Course Objectives:

- To Study Historical Development of modern theories of Special Theory of Relativity and Quantum Mechanics
- To Learn Concept of- Length Contraction, Time Dilation in Special Theory of Relativity
- To Learn Dual Nature of Waves and Matter
- To Study Historical Evolution of Atomic Models
- To Learn Basics of Concept of Quantization of Energy Levels in Atoms
- To Study Basics of LASER
- To enrich knowledge of modern physics through problem solving

Course Outcomes:

On completion of the course, student should be able to-

- Understand how theories in physics develop from Experimental Results and Hypothesis
- Apply Special Theory of Relativity for Simple Situations
- Understand Dual Nature of Waves and Matter
- Apply Bohr's Atomic Model to Hydrogen Atom
- Understand fundamental principles of LASER

Semester I

Course Contents

Chapter 1	Special Theory of Relativity	09 Lectures
	Postulates of Theory of Relativity	
	• Time Dilation, Doppler Effect, Length	
	Contraction	
	• Relativistic Momentum, Mass Energy and	
	Momentum relations	
	Galilean and Lorentz Transformationss	
	• Problems	
	Experiential Learning	
Chapter 2	Particle Properties of Waves	09 Lectures
	• Electromagnetic Waves,	
	• Blackbody Radiations (Stefan's law of	
	radiation, Wein's Displacement Law)	
	• Photoelectric Effect, Einstein's Equation for	
	photoelectric effect	

	• Dual Nature of Light, Compton Effect-	
	Conservation of photon momentum	
	Pair Production	
	• Problems	
	Experiential Learning	
Chapter 3	Wave Nature of Particles	09 Lectures
	• De-Bloglie's Hypothesis, Wavelength of De-	
	Bloglie Waves	
	• Equation of Waves, Travelling Sinusoidal	
	Waves	
	• Phase and Group Velocities, Particle	
	Diffraction	
	 Davisson-Germer Experiment 	
	Uncertainty Principle	
	• Problems	
	Experiential Learning	
Chapter 4	Atomic Models	9 Lectures
	• Thomson's Atomic Model, The Nuclear	
	Atom, Electron Orbits	
	• Planck's hypothesis, Atomic Spectra, The	
	Bohr's Atomic Model	
	• Energy Levels and Spectra, Frank-Hertz	
	experiment	
	• Atomic Excitation, Stimulated Absorption,	
	Spontaneous Emission, Stimulated Emission,	
	• LASER	
	• Problems	
	Experiential Learning	

References

- 1. Concepts of Modern Physics Arthur Beiser, Shobit Mahajan, S Rai Choudhury, Mc-Graw Hill
- 2. Fundamentals of Physics, Haliday, Resnick and Walker
- 3. Perspective of Modern Physics- Arthur Beiser
- 4. Quantum Mechanics: AjoyGhatak and S. Loknanthan
- 5. Quantum Physics: Eisberg and Resnick

Course Code: 19ScPhyU103 Course Name: Practical Course - I

Teaching Scheme: TH: 3 Lectures /Week Examination Scheme: CIA: 40 Marks

Credit : 02 End-Sem : 60 Marks

Prerequisite Courses:

- Familiarity with 10+2 level physics syllabus
- Familiarity with basic Science Instruments /Apparatus

Course Objectives:

- 1. To gain practical knowledge by applying the experimental methods to correlate with the Physics theory.
- 2. To learn the usage of electrical and optical systems for various measurements.
- 3. Apply the analytical techniques and graphical analysis to the experimental data.
- 4. To develop intellectual communication skills and discuss the basic principles of scientific concepts in a group.

Course Outcomes:

On completion of the course, student should be able to-

- Apply the various procedures and techniques for the experiments.
- Use the different measuring devices and meters to record the data with precision
- Apply the mathematical concepts/equations to obtain quantitative results
- Develop basic communication skills through working in groups in performing the laboratory experiments and by interpreting the result
- Acquire technical and manipulative skills in using laboratory equipment, tools, and materials.
- Demonstrate an ability to collect data through observation and/or experimentation and interpreting data.
- Demonstrate an understanding of laboratory procedures including safety, and scientific methods.
- Demonstrate a deeper understanding of abstract concepts and theories gained by experiencing and visualizing them as authentic phenomena.
- Acquire the complementary skills of collaborative learning and teamwork in laboratory settings

Semester I

Course Contents

	Measurements	8 Lectures
1.	Range and Least Count of Instruments,	
	Measurements using various instruments and error	
	analysis (Vernier caliper, screw gauge)	
2.	Range and Least Count of Instruments,	
	Measurements using various instruments and error	
	analysis (Travelling Microscope, Spectrometer	
	etc.)	
3.	Measurement using Analog Meters(Voltage and	
	Current) and Digital Multimeter (Voltage	
	Current ,Resistance, Continuity, Capacitor Check)	
	Mechanics	12 Lectures

4.MI of Flywheel5.Determination of Y and n by flat spiral spring6. Determination of Y by bending	
Light	8 Lectures
7.Study of Spectrometer-Angle of Prism 8.Plane Diffraction Grating	
Electricity and Magnetism	12 Lectures
9. Verification of Kirchhoff's Current Law	
10.Verification of Kirchhoff's Voltage Law	

Additional Activities

- 1. Demonstrations (Any four demonstrations equivalent to two experiments)
- 2. Magnet –magnet interaction
- **3.** Collision by using balls
- 4. Study of Signal generator using CRO (Sine, square wave signal, measurement of AC voltage, frequency)
- **5.** Demonstration of action potential
- 6. Measurement of sound pressure level
- 7. Computer aided demonstrations (Using computer simulations or animations)

(Any two demonstrations equivalent to two experiments)

- 1. Coulomb's law
- 2. Vectors : visualization of vectors
- 3. Bohr's model
- 4. Carnot engine, diesel engine
- 5. Graphs and their slopes, and Kinematics graphs (using computer simulations)
- 6. Mini projects/Hand on activities

(Any one equivalent to two experiments)

- 1. Students should collect the information of at least five Physicists with their work.
- 2. Students should carry out mini projects

4. Study tour (Equivalent to two experiments)

Students participated in study tour must submit a study tour report.

Students have to perform at least two additional activities out of four activities in addition to Ten experiments mentioned above. Total Laboratory work with additional activities should be equivalent to Twelve experiments. **References:**

- 1. F. Y. B. Sc. practical manual prepared and compiled by physics department.
- 2. Advanced Practical Physics for Students by B. L. Worsnop and H. T. Flint
- 3. B. Sc. Practical Physics by S. Chand

Course Code: 19ScPhyU201 Course Name: Heat and Thermodynamics

Teaching Scheme: TH: 3 Lectures/Week Examination Scheme: CIA: 40 Marks

Credit : 02 End-Sem : 60 Marks

Prerequisite Courses:

- Familiarity with 10+2 level physics syllabus
- Familiarity with basic concepts of Thermodynamics and Thermometry

Course Objectives:

- This course aims to provide a good platform to mechanical engineering students to understand, model and appreciate concept of dynamics involved in thermal energy transformation.
- To prepare them to carry out experimental investigation and analysis at later stages of graduation.

Course Outcomes:

Course Contents

- To apply the knowledge of mathematics, science and engineering fundamentals to model the energy conversion phenomenon.
- To identify and formulate power production based on the fundamentals laws of thermal engineering.
- To instill upon to envisage appropriate experiments related to heat engines.
- To investigate the effectiveness of energy conversion process in mechanical power generation for the benefit of mankind.
- To appreciate concepts learnt in fundamentals laws of thermodynamics from which learning ideas how to sustain in energy crisis and think beyond curriculum in the field of alternative and renewable sources of energy.
- To communicate effectively the concepts of internal combustion engines and try to think beyond curriculum in alternative sources of energy.

Semester II

Chapter 1	Fundamentals of Thermodynamics	10 Lectures
	Concept of Thermodynamic State,	
	• Equation of State, Van der Waal's Equation of	
	State, Thermal equilibrium	
	 Zeroth Law of Thermodynamics, 	
	Thermodynamic process: Adiabatic, Isothermal	
	, Isobaric and Isochoric Changes, Indicator	
	diagram	
	 Work done during Isothermal Change, 	
	Adiabatic Relations	
	 Work done during Adiabatic Change, Internal 	
	Energy, Internal energy as State Function	
	• First Law of Thermodynamics, Reversible and	
	Irreversible Changes	
	Problems	
	Experiential Learning	
Chapter 2	Applied Thermodynamics:	09 Lectures

	 Conversion of Heat into Work and it's Converse Second Law of Thermodynamics, Concept of Entropy Temperature-Entropy Diagram, T-dS Equations Clausius-Clapeyron Latent Heat Equations 	
	 Problems Experiential Learning 	
Chapter 3	Heat Transfer Mechanisms	09 Lectures
	 Carnot's Cycle and Carnot's Heat Engine and its efficiency Heat Engines: Otto Cycle & its Efficiency, Diesel Cycle & its efficiency Refrigerators: General Principle and Coefficient of performance of Refrigerator Simple Structure of Vapour Compression Refrigerator, Air Conditioning: Principle and it's Applications Problems Experiential Learning 	
Chapter 4	Thermometry	08 Lectures
	 Concept of Heat & Temperature, Principle of Thermometry Temperature Scales & interconversions Principle-Construction and Working: (Liquid Thermometers, Liquid Filled Thermometers, Gas filled Thermometers Bimetallic Thermometers, Platinum Resistance Thermometer, Thermocouple), Problems Experiential Learning 	

References

- 1. Concept of Physics: H. C. Verma, BharatiBhavan Publisher.
- 2. Heat and Thermodynamics: Brijlal, N. Subrahmanyam, S. Chand and Company Ltd.
- 3. Heat and Thermodynamics: Mark. W. Zemansky, Richard H. Dittman, Seventh Edition, Mc –Graw Hill International Edition
- 4. Thermodynamics and Statistical Physics: J. K. Sharma, K. K. Sarkar, Himalaya Publishing House.
- 5. Instrumentation :Devices & Systems: Rangan, Mani, Sarma

Course Code: 19ScPhyU202 Course Name: Electricity and Magnetism

Teaching Scheme: TH: 3 Lectures /Week Examination Scheme: CIA : 40 Marks Credit : 02 End-Sem : 60 Marks

Prerequisite Courses:

- Familiarity with 10+2 level physics syllabus
- Familiarity with basic concepts of calculus

Course Objectives:

- To Study Basics of Electrostatics and Magnetostatics in Vacuum and in Dielectric Media
- To enrich knowledge of Electricity and Magnetism through problem solving

Course Outcomes:

On completion of the course, student should be able to-

• Apply classical theory of Electrostatics and Magnetostatics

Semester II

Course	Contents
Course	Contents

Chapter 1	Electrostatics	09 Lectures
	Revision of Coulomb's Law	
	• Superposition Principle, Electrostatic	
	Potential, Concept of electron Volt (eV)	
	• Electric Field and Electric Potential due to-	
	Point Charge, Group of Charges and	
	Continuous Charge Distribution, Line of	
	Charge, Charged Disc, Charged Sphere	
	• Revision of Gauss's Law, Comparison	
	between Coulomb's Law and Gauss's Law,	
	Applications of Gauss's Law- Cylindrical,	
	Spherical and Planar symmetry	
	• Problems	
	Experiential Learning	
Chapter 2	Dielectrics	09 Lectures
	Electric Dipole, Dipole Moment	
	• Electric Potential and Electric Field	
	Intensity at any Point due to Dipole	
	 Torque on Dipole placed in Uniform 	
	Electric Field	
	 Polar and Non-Polar Molecules 	
	• Electric Polarization of Dielectric Material,	
	Gauss's Law in Dielectrics	
	• Problems	
	Experiential Learning	
Chapter 3	Magnetostatics	09 Lectures
	Revision of Biot- Savart's Law	
	And Applications of Biot-Savart's Law	
	• Ampere's Law, Applications of Amperes	

	 Law-Straight Current Carrying Wire, Circular Loop ofCurrent Carrying Wire, Solenoid and Toroid Gauss's Law for Magnetism Problems Experiential Learning 	
Chapter 4	Magnetic Prperties of Materials	9 Lectures
	 Magnetic Materials- Paramagnetic, Diamagnetic and Ferromagnetic Introduction to Bohr Magneton, Magnetization (M), Magnetic Intensity (H), Magnetic Induction (B) Magnetic Susceptibility and Permeability Relation between B, M and H, Hysteresis Problems Experiential Learning 	

Reference Books:

- Fundamentals of Physics, Haliday, Resnick and Walker
 Introduction to Electrodynamics, D. J. Griffitths
 Feynman's Lectures on Physics (Volume 2)
 Concepts of Physics, H. C. Verma

Course Code: 19ScPhyU203 Course Name: Practical

Teaching Scheme: TH: 3 Hours/Week Examination Scheme: CIA : 40 Marks

Credit : 02 End-Sem : 60 Marks

Prerequisite Courses:

- Familiarity with 10+2 level physics syllabus
- Familiarity with basic Science Instruments /Apparatus

Course Objectives:

- To gain practical knowledge by applying the experimental methods to correlate with the Physics theory.
- To learn the usage of electrical and optical systems for various measurements.
- Apply the analytical techniques and graphical analysis to the experimental data.
- To develop intellectual communication skills and discuss the basic principles of scientific concepts in a group.

Course Outcomes:

On completion of the course, student should be able to-

- Apply the various procedures and techniques for the experiments.
- Use the different measuring devices and meters to record the data with precision
- Apply the mathematical concepts/equations to obtain quantitative results
- Develop basic communication skills through working in groups in performing the laboratory experiments and by interpreting the result
- Acquire technical and manipulative skills in using laboratory equipment, tools, and materials.
- Demonstrate an ability to collect data through observation and/or experimentation and interpreting data.
- Demonstrate an understanding of laboratory procedures including safety, and scientific methods.
- Demonstrate a deeper understanding of abstract concepts and theories gained by experiencing and visualizing them as authentic phenomena.
- Acquire the complementary skills of collaborative learning and teamwork in laboratory settings.

Course Contents

Heat and Thermodynamics	12 Lectures
1.Thermal Conductivity by Lee's method	
2. Study of Temperature Coefficient of Resistance	
3.Study of Temperature Coefficient of Resistance	
Mechanics	12 Lectures
4.Surface Tension by Capillary Rise Method	
5. Viscocity by Stoke's Method	
6.Modulus of Rigidity of Disc by Torsional Oscillations	
Light	4 Lectures
7.Calibration of Spectrometer	
Electricity and Magnetism	12 Lectures
8.Vector Diagram of L-R Circuit	
9. Characteristics of a Diode	
10. Frequency of A. C.	

Additional Activities

1. Demonstrations (Any four demonstrations equivalent to two experiments)

- 1. Magnet –magnet interaction
- 2. Collision by using balls
- 3. Study of Signal generator using CRO (Sine, square wave signal, measurement of AC voltage, frequency)
- 4. Demonstration of action potential
- 5. Measurement of sound pressure level
- 2. Computer aided demonstrations (Using computer simulations or animations)
- (Any two demonstrations equivalent to two experiments)
- 1. Coulomb's law
- 2. Vectors : visualization of vectors
- 3. Bohr's model
- 4. Carnot engine, diesel engine
- 5. Graphs and their slopes, and Kinematics graphs (using computer simulations)
- 3. Mini projects/Hand on activities
- (Any one equivalent to two experiments)
- 1. Students should collect the information of at least five Physicists with their work.
- 2. Students should carry out mini projects
- 4. Study tour (Equivalent to two experiments)
- Students participated in study tour must submit a study tour report.

Students have to perform at least two additional activities out of four activities in addition to Ten experiments mentioned above. Total Laboratory work with additional activities should be equivalent to Twelve experiments.

References:

- 1. F. Y. B. Sc. practical manual prepared and compiled by physics department.
- 2. Advanced Practical Physics for Students by B. L. Worsnop and H. T. Flint
- 3. B. Sc. Practical Physics by S. Chand