Progressive Education Society's

Modern College of Arts, Science and Commerce,

Shivajinagar, Pune 5

(An Autonomous College Affiliated to Savitribai Phule Pune University)

Detailed Syllabus

For B.Sc. Microbiology

(2019-20 Course)

(with effect from 2019-20)

Semester 1 (First Year)

Course Type	Course Code	Course / Paper Title	Hours / Week	Credit	CIA	End Sem Exam	Total
CCT-1	19ScMicU101	Introduction to Microbiology	03	02	40	60	100
CCT-2	19ScMicU102	Techniques in Microbiology	03	02	40	60	100
CCP-1	19ScMicU103	Practical course based on Theory Papers I and II	03	02	40	60	100
		Total Credits	-	06			

Semester 2 (First Year)

Course	Course Code	Course / Paper Title	Hours /	Credit	CIA	End Sem	Total
Туре			Week			Exam	
CCT-9	19ScMicU201	Biochemistry and cell organization	03	02	40	60	100
CCT-10	19ScMicU202	Bacterial growth and cultivation	03	02	40	60	100
CCP-5	19ScMicU203	Practical course based on Theory Papers I and II	03	02	40	60	100
		Total Credits	-	06			

Course Code: 19ScMicU101 Course Name: Introduction to Microbiology - I

Teaching Scheme: TH: 3 Hours/Week

Examination Scheme: CIA: 40 Marks

Prerequisite Courses:12th pass science stream

Course Objectives:

- To introduce the students to the history of Microbiology
- To enrich students with the knowledge of Microbiology
- To introduce the concepts of applications in Microbiology
- To help the students to build up a successful career

Course Outcomes:

- Students will be aware of the history of microbiology
- Students will be perceptive about the basic structure and function of microbial cells
- Students will be cognizant about the applications of microbiology

Course Contents:

Unit 1	Introduction to the microbial world	No of lectures
	A. History of Microbiology	18
	Developments in Microbiology	
	Discovery of the microscope, Micrographia of Antonvan Leeuwenhoek and Robert Hooke, Abiogenesis v/s biogenesis, Aristotle's notion about spontaneous generation, Redi's experiment, Louis Pasteur's & Tyndall's experiments	
	Golden Era of Microbiology	
	Contributions of-Louis Pasteur (Fermentation, Rabies, and Pasteurization) Robert Koch (Germtheory of disease, Tuberculosis, and Cholera) Ferdinand Cohn (Endospore discovery)	

End-Sem: 60 Marks

Credit: 02

	Contribution of Joseph Lister (antisepticsurgery), Paul Ehrlich (Chemotherapy), Elie Metchnikoff (Phagocytosis), Edward Jenner (Vaccination) and Alexander Fleming (Penicillin) in the establishment of fields of Medical Microbiology and Immunology, Contribution of Martinus W. Beijerinck (Enrichment culture technique, <i>Rhizobium</i>), Sergei N. Winogradsky (Nitrogen fixation and Chemolithotrophy) in the development of the field of Soil Microbiology B. Scope of Microbiology Microbiology in human health and diseases Microbiology in industry and waste treatment Microbiology in food and dairy Microbiology in agriculture Microbiology in the marine environment	
Unit 2	Diversity of Microbial world	No of lectures
	 A. Systems of Classification Binomial Nomenclature Whittaker's five king doms and Carl Woese's three domain classification systems and their utility. B. Difference between prokaryotic and eukaryotic microorganisms Types of microorganisms and their differentiating characters: General characteristics including details of the morphology of different groups: Acellular microorganisms (Viruses, Viroids, and Prions) and cellular microorganisms (Bacteria, Algae, Fungi and Protozoa) with emphasis on distribution and occurrence, morphology, mode of reproduction and economic importance. C. Principles of classification Introduction to 9th edition Bergey's Manual of Determinative and Systemic Bacteriology viruses Introduction to different groups of viruses 	17
Unit 3	Experiential learning / field visit/ internship	01

- Ingraham, J.L., & Ingraham, C.A. (2013). Introduction to Microbiology. Wadsworth Publishing Company.
- Madigan, M.T., & Martinko, J.M. (2019). Microorganisms and Microbiology. Brock biologyofmicroorganisms.15thedition.New York: Pearson
- Tortora, G. J., Funke, B. R., Case, C. L., & Johnson, T. R. (2016). Microbiology : an introduction. 12th edition, Pearson Education
- Michael, J. P. (2009). Microbiology : An Application-Based Approach. Tata McGraw Hill Education Private Limited.
- Willey, J. M., Sherwood, L., & Woolverton, C. J. (2013). Prescott, Harley, and Klein's microbiology. 8th edition, McGraw-Hill Higher Education.
- Salle, A. J. (1971). Fundamental Principles of Bacteriology. 7th edition. Tata McGraw Hill Publishing Co.
- Stanier, R. Y., Ingraham, J. L., Wheelis, M. L., & Painter, P. R. (1987). General Microbiology., 5th edition. Macmillan Press Ltd.
- Nelson, D. L., & Cox, M. M. (2008). Leininger principles of Biochemistry. 7thedition. McMillan.
- Brown, J. H. (1939). Bergey's manual of determinative bacteriology.
- Holt, J. G., & Krieg, N. R. (1984). Bergey's manual of systematic bacteriology, vol.1. The Williams and Wilkins Co., Baltimore,1-1388.

Course Code: 19ScMicU102 Course Name: Techniques in Microbiology

Teaching Scheme: TH: 3 Hours/Week

Examination Scheme: CIA: 40 Marks

Course Objectives:

- To enrich the students with knowledge in microbial sciences
- To acquaint the students with different microscopic and staining techniques
- To develop awareness in the students about the various techniques in microbial laboratories
- To inculcate a sense of environmental awareness

Course Outcomes:

- Students will be familiar with the different techniques routinely used in microbiology laboratories
- Students will be cognizant about the various aspects associated with the microbial growth
- Students will have knowledge about the cultivation techniques used for microorganisms

Course Contents:

Unit 1	Microso	сору	Nooflectures
	Α.	Fundamental Principles	18
	•	SI units of measurements, Molar and Normalsolutions	
	•	Problems on measurements	
	В.	Microscopy	
	٠	Properties of light, Spectrum, Wavelength, Frequency, Amplitude	
	•	History of microscopy	
	•	Concepts in microscopy- Magnification, Refractive index, Numerical	
		aperture, Resolving power	
	•	Aberrations in lenses - spherical, chromatic, comma and astigmatism,	
	•	Principle, working, ray diagram and applications of	
		 Bright field microscopy 	
		 Dark field microscopy 	
		 Phase contrast microscopy 	
		 Fluorescence microscopy 	
		 Electron microscopy– SEM, TEM a n d AFM 	

End-Sem: 60 Marks

Credit: 02

Unit 2	Staining and Sterilization	Nooflectures
	 A. Basic staining techniques: Definitions of Stain, Types of stains (Basic and Acidic), Properties an drole of Fixatives, Mordants, Decolorizers, and Accentuators. Monochrome staining and Negative (Relief) staining; Differential staining-Gram staining and Acid-fast staining; Special staining-Capsule, Cellwall, Spore, Flagella, Lipidgranules, Metachromatic granules B. Sterilization and Disinfection Mode of action and application of Physical agents: Heat Radiation Filtration Chemical agents : Mode of action and application of: Aldehydes, Halogens, Quaternary ammonium compounds, Phenol, and Phenolic compounds, Heavy metals, Alcohols, Dyes, Detergents, and Ethyleneoxide Characteristics of an ideal disinfectant Checking of efficiency of sterilization Biological and Chemical indicators Checking the efficiency of disinfectant Phenolco efficient-Rideal Walker coefficient 	17
Unit 3	Experiential learning / field visit/ internship	01

- Ingraham, J. L., & Ingraham, C.A. (2013). Introduction to Microbiology. Wadsworth Publishing Company.
- Madigan, M.T., & Martinko, J. M. (2019). Microorganisms and microbiology. Brock biology of Microorganism, 15th edition, New York (NY) :Pearson
- Tortora, G. J., Funke, B. R., Case, C. L., & Johnson, T. R. (2016). Microbiology : an introduction. 12th edition, Pearson Education
- Michael, J. P. (2009). Microbiology : An Application Based Approach. Tata McGraw Hill Education Private Limited
- Willey, J. M., Sherwood, L., & Woolverton, C. J. (2013). Prescott, Harley, and Klein's Microbiology. 8th edition, McGraw- Hill Higher Education.
- Salle, A. J. (1971) Fundamental Principles of Bacteriology 7th edition, Tata Mc Graw Hill Publishing Co.
- Stanier, R. Y., Ingraham, J. L., Wheelis, M. L., & Painter, P. R. (1987). General Microbiology. General Microbiology., 5th edition, Macmillan Press Ltd.

Course Code: 19ScMicU103

Course Name: Laboratory on Microbiology

Teaching Scheme: TH: 3 Hours/Week Examination Scheme: CIA: 40 Marks Credit: 02 End-Sem: 60 Marks

PrerequisiteCourses:12th Science Stream

Course Objectives:

- To enrich students' knowledge about microorganisms
- To introduce the concepts related to cultivation, maintenance, and control of microorganisms
- To inculcate a sense of scientific responsibilities and social and environmental awareness

Course Outcomes:

On completion of the course, the student will be able to:

- Perform microbiological manipulations independently and confidently.
- Buildup a progressive and successful career.

Course Contents:

Practical 1	Bio safety and chemical safety in Microbiology laboratory	2
Practical 2	Preparation of Standard Operating Procedures (SOPs) for co mmon microbiology laboratory instruments	2
Practical 3	Construction andworkingof bright field microscope and dark-field microscope	2
Practical 4	Observations of microorganisms from soil and water fungi, bacteria, yeast, protozoa and algae and Field visit	2
Practical 5	Observations of morpho forms on the human skin, effect of soap and disinfectant on hand washing	2
Practical 6	Observation of bacterial motility by hanging drop technique and swarming growth	2
Practical 7	Enumeration of yeast cells by Neubauer's chamber counting technique	2
Practical 8	Simple staining techniques: a. Monochrome staining b. Negative/Relief staining (Capsule staining)	2
Practical 9	Differential staining techniques a. Gram staining of bacteria b. Endospore staining	2

- Aneja K. R., (2003). Experiments in Microbiology, Plant Pathology, and Biotechnology 4th edition. New Age International (P) Ltd.
- Fleming, D. O., & Hunt, D. L. (2006). Biological safety: principles and practices, 4th edition. ASM Press.
- Prescott, H. (2002). Laboratory exercises in microbiology 5thedition. McGraw-Hill.
- Richmond, J. Y., & McKinney, R. W. (1993). Biosafety in microbiological and biomedical laboratories. U. S. Government Printing Office, Washington
- Salle, A. J. (1954). Fundamental principles of bacteriology. McGraw-Hill.
- Tiwari R. P., Hoondal G. S., & Tewari R. (2009). Laboratory techniques in Microbiology and Biotechnology. Abhishek Publications

Course Code: 19ScMicU201

Course Name: Biochemistry and Cell Organization

Teaching Scheme: TH: 3 Hours/Week Examination Scheme: CIA: 40 Marks Course Contents:

(n)

. .

Г

Credit: 02 End-Sem: 60 Marks

Unit 1	Structure, organization, and functions	Noofle ctures
	 A. Proteins: Structure of amino acids, peptide bond, Types of amino acids based on R group Structural levels of proteins: primary, secondary, tertiary and quaternary, Examples (Hemoglobin, flagellin) Functions of proteins B.Carbohydrates: 	18
	 Families of mono saccharides: aldoses and ketoses, trioses, tetroses, pentoses, andhexoses. Stereoisomerism of monosaccharides, e p i m e r s, mutarotation, and anomers of glucose. Furanose and pyranose forms of glucose and fructose, Haworth projection formulae for glucose; chair and boat forms of glucose Sugar derivatives: glucose amine, galactos amine, muramic acid, N-acetylne uraminic acid Disaccharides: t h e concept of reducing and non-reducing sugars, occurrence and Haworth projections of maltose, lactose, and sucrose Polysaccharides: storage polysaccharides, starch, and glycogen. Structural Polysaccharides, cellulose, peptidoglycan and chitin 	
	 C. Lipids: Definition and major classes of storage and structural lipids. Storage lipids. Fatty acids structure and functions. Essential fatty acids. Triacylglycerols structure, functions, and properties. Saponification, Structural lipids. Phosphoglycerides: Building blocks, General structure, functions, and properties. Structure of phosphatidyle thanolamine and phosphatidylcholine, Sphingolipids: building blocks, the structure of sphingosine, ceramide. Lipidfunctions: cellsignals, cofactors, prostaglandins, Introduction of lipid micelles, monolayers, bilayers 	
	D. Nucleic Acids:	

Unit 2	Cellorganizationinprokaryotes	Noofle ctures
	 Cellsize, shape and arrangement Glycocalyx, capsule, flagella, endo flagella, fimbriae and pili. Cell-wall: Composition and detailed structure of Grampositive and Gram-negative cell walls, Archaebacterial cell wall, Gram and acid-fast staining mechanisms, lipopolysaccharide (LPS), spheroplasts, protoplasts, and L-forms. Cell Membrane: Structure, function and chemical composition of bacterial and archaeal cell membranes. Cytoplasm: Ribosomes, mesosomes, inclusion bodies, nucleoid, chromosome, and plasmids. Endospore: Structure, formation, stages of sporulation. 	17
Unit 3	Experiential learning /field visit/ internship	01

- Ingraham, J. L., & Ingraham, C.A. (2013). Introduction to Microbiology. Wadsworth PublishingCompany.
- Madigan, M. T., & Martinko, J. M. (2019). Microorganisms and Microbiology. Brock biology of microorganisms. 15th edition. New York: Pearson
- Michael, J. P. (2009). Microbiology: An Application- Based Approach. Tata McGraw Hill Education Private Limited.
- Nelson, D. L., & Cox, M. M. (2008). Leininger principles of Biochemistry. 7th edition. McMillan.
- Salle, A. J. (1971). Fundamental Principles of Bacteriology. 7th edition. Tata McGraw Hill Publishing Co.
- Stanier, R. Y., Ingraham, J. L., Wheelis, M. L., & Painter, P. R. (1987). General Microbiology., 5th edition. Mac-millan Press Ltd.
- Tortora, G. J., Funke, B. R., Case, C. L., & Johnson, T. R. (2016). Microbiology: an introduction.12th edition, Pearson Education
- Willey, J. M., Sherwood, L., & Woolverton, C. J. (2013). Prescott, Harley, and Klein's microbiology. 8th edition, McGraw-Hill Higher Education.

Course Code: 19ScMicU202

Course Name: Microbial Growth and Cultivation

Teaching Scheme: TH: 3 Hours/Week Examination Scheme: CIA: 40 Marks Credit: 02 End-Sem: 60 Marks

Unit 1	Bacterial growth and measurement	No of lectures
	A. Bacterial growth	18
	Growth curve and Generation time	
	Diauxic growth	
	B. Measurement of bacterial growth	
	 Microscopic methods (Direct Microscope (Count, counting 	
	cells using Neubauer, Petroff and Hausser's chambers)	
	Plate counts (Total Viable Count), Turbidi metric	
	methods, Estimation of Biomass (Drymass, Cell	
	nitrogen estimation)	
	C. Factors affecting bacterial growth {pH, temperature, solute	
	concentration (salt and sugar)} and heavy metals	
	D. Synchronous and continuous culture (Turbidostat and	
	Chemostat)	
Unit 2	Cultivation of Microorganisms:	No of lectures
Unit 2	Cultivation of Microorganisms:	No of lectures
Unit 2	Cultivation of Microorganisms: A. Nutritional requirements and their classification	No of lectures
Unit 2	Cultivation of Microorganisms: A. Nutritional requirements and their classification B. Design and preparation of media –Commoning redients of media and functional types of media	No of lectures 17
Unit 2	 Cultivation of Microorganisms: A. Nutritional requirements and their classification B. Design and preparation of media –Commoning redients of media and functional types of media. C. Methods, for cultivating photosynthetic extremonbilic 	No of lectures
Unit 2	 Cultivation of Microorganisms: A. Nutritional requirements and their classification B. Design and preparation of media –Commoning redients of media and functional types of media. C. Methods for cultivating photosynthetic, extremophilic, chemolithotrophic aerobic and anaerobic bacteria, action 	No of lectures 17
Unit 2	 Cultivation of Microorganisms: A. Nutritional requirements and their classification B. Design and preparation of media –Commoning redients of media and functional types of media. C. Methods for cultivating photosynthetic, extremophilic, chemolithotrophic aerobic and anaerobic bacteria, action mycetes, algae, fungi, and protozoa 	No of lectures 17
Unit 2	 Cultivation of Microorganisms: A. Nutritional requirements and their classification B. Design and preparation of media –Commoning redients of media and functional types of media. C. Methods for cultivating photosynthetic, extremophilic, chemolithotrophic aerobic and anaerobic bacteria, action mycetes, algae, fungi, and protozoa D. Concept of pure culture, enrichment, and isolation 	No of lectures 17
Unit 2	 Cultivation of Microorganisms: A. Nutritional requirements and their classification B. Design and preparation of media –Commoning redients of media and functional types of media. C. Methods for cultivating photosynthetic, extremophilic, chemolithotrophic aerobic and anaerobic bacteria, action mycetes, algae, fungi, and protozoa D. Concept of pure culture, enrichment, and isolation E. Maintenance of bacterial and fungal cultures by 	No of lectures 17
Unit 2	 Cultivation of Microorganisms: A. Nutritional requirements and their classification B. Design and preparation of media –Commoning redients of media and functional types of media. C. Methods for cultivating photosynthetic, extremophilic, chemolithotrophic aerobic and anaerobic bacteria, action mycetes, algae, fungi, and protozoa D. Concept of pure culture, enrichment, and isolation E. Maintenance of bacterial and fungal cultures by using various techniques 	No of lectures 17
Unit 2	 Cultivation of Microorganisms: A. Nutritional requirements and their classification B. Design and preparation of media –Commoning redients of media and functional types of media. C. Methods for cultivating photosynthetic, extremophilic, chemolithotrophic aerobic and anaerobic bacteria, action mycetes, algae, fungi, and protozoa D. Concept of pure culture, enrichment, and isolation E. Maintenance of bacterial and fungal cultures by using various techniques F. Culture collection centers and theirrole C. Dequirements and guidelines of National Biadiversity 	No of lectures 17
Unit 2	 Cultivation of Microorganisms: A. Nutritional requirements and their classification B. Design and preparation of media –Commoning redients of media and functional types of media. C. Methods for cultivating photosynthetic, extremophilic, chemolithotrophic aerobic and anaerobic bacteria, action mycetes, algae, fungi, and protozoa D. Concept of pure culture, enrichment, and isolation E. Maintenance of bacterial and fungal cultures by using various techniques F. Culture collection centers and theirrole G. Requirements and guidelines of National Biodiversity Authority for culture collection conters 	No of lectures 17

- Aneja K. R., (2003). Experiments in Microbiology, Plant Pathology, and Biotechnology 4th edition. New Age International (P) Ltd.
- Atlas, R. M. (2005). Media for environmental microbiology. Hand book 2nd edition, CRC Press.
- Ingraham, J. L., & Ingraham, C.A. (2013). Introduction to Microbiology. Wadsworth Publishing Company.
- Madigan, M. T., & Martinko, J. M. (2019). Brock biology of microorganisms. 15th edition. New York: Pearson
- Michael, J. P. (2009). Microbiology: An Application Based Approach. Tata Mc Graw Hill Education Private Limited.
- Nelson, D. L., & Cox, M. M. (2008). Lehninger principles of Biochemistry. 7th edition. Mc-Millan.
- Power, D. A., & Johnson, J. A. (2009). Difco[™] and BBL[™] manual: manual of microbiological culture media 2ndedition. BD Diagnostics Diagnostic Systems.
- Salle, A. J. (1971). Fundamental Principles of Bacteriology. 7th edition. Tata McGraw Hill Publishing Co.
- Stanier, R. Y., Ingraham, J. L., Wheelis, M. L., & Painter, P. R. (1987). General Microbiology., 5th edition. Mac0-Millan Press Ltd.
- Tortora, G. J., Funke, B. R., Case, C. L., & Johnson, T. R. (2016). Microbiology: an introduction. 12th edition, Pearson Education
- Willey, J. M., Sherwood, L., & Woolverton, C. J. (2013). Prescott, Harley, and Klein's microbiology. 8th edition, McGraw-Hill Higher Education.

Course Code: 19ScMicU203

Course Name: Laboratory on Microbiology

Teaching Scheme: TH: 3 Hours/WeekCredit: 02Examination Scheme: CIA: 40 MarksEnd-Sem: 60 Marks(The practical course has practical of fourh ours, two hours on each consecutive days)

Practical 1	Preparation of liquid and solid media	2
Practical 2	Demonstration practical-Cultivation of microorganisms using a. Winogradusky's column b. Fungi using potato dextrose agar c. Protozoans using hey infusion d. Algae using BG11 medium	2
Practical 3	Aseptic transfer techniques: slant to the broth, broth to broth, broth to agar, Agar to Agar.	2
Practical 4	Cultivation of bacteria on the growth media by streak plate technique and recording colony and cultural characteristics	2
Practical 5	Enumeration of bacteria from food/soil/water by spread and pour plate technique	2
Practical 6	Preservation of microbial cultures (on slants, grains, inglycerol, liquid nitrogen, and by lyophilization) and revival of cultures	2
Practical 7	Checking sterilization efficiency of autoclave and hot air sterilizer	2
Practical 8	Study the effect of different parameters on the growth of <i>E.coli</i> : pH, temperature, sodium chloride concentration	2
Practical 9	Study of Oligo dynamic action of heavy metal	2

- Atlas, R. M. (2005). Media for environmental microbiology. Handbook 2nd edition. CRC Press.
- Bensons, H. J. (2002). Microbiological applications: a laboratory manual in general microbiology, 8th edition. McGraw-Hill.
- Jay, J. M., Loessner, M. J., & Golden, D. A. (2005). Modern food Microbiology 7th edition. Springer.
- Power, D. A., & Johnson, J. A. (2009). Difco[™] and BBL[™] manual: manual of microbiological culture media 2nd edition. BD Diagnostics–Diagnostic Systems.
- Prescott, H. (2002). Laboratory exercises in microbiology 5th edition. McGraw-Hill.
- Sikyta, B. (1995). Techniques in applied microbiology (Vol. 31). Elsevier.

- Tiwari R. P., Hoondal G. S., & Tewari R. (2009). Laboratory techniques in Microbiology and Biotechnology. Abhishek Publications
- Tortora, G. J., Funke, B. R., Case, C. L., & Johnson, T. R. (2004). Microbiology: an introduction. CA: Benjamin Cummings.
- Willey, J. M., Sherwood, L., & Woolverton, C. J. (2008). Prescott, Harley, and Klein's microbiology 7th edition. McGraw-Hill HigherEducation.