Progressive Education Society's Modern College of Arts, Science and Commerce,

Shivajinagar, Pune 5 (An Autonomous College Affiliated to SavitribaiPhule Pune University)

Detailed Syllabus

For B.Sc. Biotechnology

(2019-20 Course)

(with effect from **2019-20**)

Semester 1 (First Year)

Course Type	Course Code	Course / Paper Title	Hours / Week	Credit	CIA	End Sem Exam	Total
CCT-1	19ScBioU101	Fundamentals of Chemistry I	03	02	40	60	100
CCT-2	19ScBioU102	Introduction to Physics I	03	02	40	60	100
CCT-3	19ScBioU103	Basics of Plant Sciences I	03	02	40	60	100
CCT-4	19ScBioU104	Basics of Animal Sciences I	03	02	40	60	100
CCT-5	19ScBioU105	Mathematics and Statistics I	03	02	40	60	100
CCT-6	19ScBioU106	Biological Chemistry I	03	02	40	60	100
CCT-7	19ScBioU107	Biophysics	03	02	40	60	100
CCT-8	19ScBioU108	Microbiology I	03	02	40	60	100
CCP-1	19ScBioU109	Practical In Chemistry & Biochemistry	03	02	40	60	100
CCP-2	19ScBioU110	Practical In Physics & Biophysics	03	02	40	60	100
CCP-3	19ScBioU111	Practical In Biosciences	03	02	40	60	100
CCP-4	19ScBioU112	Practical In Microbiology and Statistics	03	02	40	60	100
SECT-1	19CpPedU101	Physical Education – I	1	0.5	20	30	50
		Total Credits	-	13			

Semester 2 (First Year)

Course Type	Course Code	Course / Paper Title	Hours / Week	Credit	CIA	End Sem Exam	Total
CCT-9	19ScBioU201	Fundamentals of Chemistry II (2C)	03	02	40	60	100
CCT-10	19ScBioU202	Bio Physics and Instrumentation (2C)	03	02	40	60	100
CCT-11	19ScBioU203	Basics of Plant Sciences II(2C)	03	02	40	60	100
CCT-12	19ScBioU204	Basics of Animal Sciences II(2C)	03	02	40	60	100
CCT-13	19ScBioU205	Mathematics and Statistics II (2C)	03	02	40	60	100
CCT-14	19ScBioU206	Biological Chemistry I (2C)	03	02	40	60	100
CCT-15	19ScBioU207	Microbiology II (2C)	03	02	40	60	100
CCT-16	19ScBioU208	Computers and Applications (2C)	03	02	40	60	100
CCP-5	19ScBioU209	Practical In Chemistry & Biochemistry (2C)	03	02	40	60	100
CCP-6	19ScBioU210	Practical In Microbiology and Bioinstrumentation	03	02	40	60	100
CCP-7	19ScBioU211	Practical In Biosciences (2C)	03	02	40	60	100
CCP-8	19ScBioU212	Practical Computer application and Statistics (2C)	03	02	40	60	100
SECT-2	19CpPedU201	Physical Education – II	1	0.5	20	30	50
		Total Credits	-	13			

Course Code: 19ScBioU101 Course Name: Fundamentals of Chemistry - I

Teaching Scheme: TH: 3 Hours/Week Examination Scheme: CIA: 40 Marks

Credit: 02 End-Sem: 60 Marks

Prerequisite: Basic chemistry chapters from XI & XII Science. **Course Objectives:**

- To Study Basics of chemistry and important reactions which will help various processes in biological system.
- To understand structure of molecule and various chemical reactions.
- To understand basics of thermodynamics and its applications in biochemical reactions.
- To understand basics of chemical bonding.

Course Outcomes:

On completion of the course, the student will be able to-

- Study all basic fundamentals of chemistry
- Extend their analytical thinking in the research field.

Semester I

Chapter-1	Atomic Structure	6 Lectures
	 Historical background, Electronic structure of atom, Atomic & Molecular Orbitals Shapes of Atomic Orbitals, Molecular Orbital method, Selection rules to find Electronic Configuration of Elements 	
Chapter -2	Molecules	7Lectures
	 Diatomic molecules, Valence bond theory, VSEPR theory, Hybridization involving s, p,d orbitals (sp, sp², sp³, dsp², sp²d, sp³ d, sp³ d²) Homo and heteronuclear diatomic molecules, Bond order, Magnetic properties 	
Chapter -3	Chemical Bonding	7 Lectures
	 Types of bond covalent, Ionic, Hydrogen bonding, Inter and Intramolecular Hydrogen bonding Dipole- dipole, Dipole-induced dipole interaction, Structure of water molecule, Oxidation state. Hydrophobic & Hydrophilic interaction, Hybridization involving S & P orbitals 	
Chapter -4	Thermodynamics	10Lectures
	• Entropy, Enthalpy, free energy, Reaction	

• Enzymatic process Chapter -5 Basics of Organic & Stereochemistry 6Lectures • IUPAC nomenclature Reactions of functional groups- Alkane, Alkene, Alkyne, Alcohol, Amines, Alkyl Halides, Ether. • Organic reactions- Oxidation, Reduction, Elimination, Addition, Substitution (Electrophilic/ Neucleophilic) • Conformations, Isomerism(structural and stereoisomers),Newman's & Fisher Projection formula, Epimers, Anomers • Furanose and Pyranose form, Free Radical Reactions. • Total L actures		 spontaneity Laws of thermodynamics, Critical temperature & criticalPressure, Carnot cycle and Concepts used in Refrigeration Principle, Adiabatic & Isothermal process Conditions for good refrigerant, Types of systems, Intensive and Extensive properties, Equilibrium and non-equilibrium states, Reversible and irreversible processes Internal energy, Endo and Exothermic reactions,Free energy and work, Gibb's Helmholtz equations, ATP and its Role in Bioenergetics, Biological Oxidation Reduction Reactions 	
Chapter -S Basics of Organic & Stereochemistry 6Lectures • IUPAC nomenclature Reactions of functional groups- Alkane, Alkene, Alkyne, Alcohol, Amines, Alkyl Halides, Ether. • Organic reactions- Oxidation, Reduction, Elimination, Addition, Substitution • Organic reactions- Oxidation, Reduction, Elimination, Addition, Substitution • Conformations, Isomerism(structural stereoisomers),Newman's & Fisher Projection formula, Epimers, Anomers • Furanose and Pyranose form, Free Radical Reactions.		Enzymatic process	
Total Loctures 26	Chapter - 3	 IUPAC nomenclature Reactions of functional groups- Alkane, Alkene, Alkyne, Alcohol, Amines, Alkyl Halides, Ether. Organic reactions- Oxidation, Reduction, Elimination, Addition, Substitution (Electrophilic/ Neucleophilic) Conformations, configurations, Isomerism(structural and stereoisomers),Newman's & Fisher Projection formula, Epimers, Anomers Furanose and Pyranose form, Free Radical Reactions. 	oLectures

- Stereochemistry: Conformation and mechanism by P.S.Kalsi
- Organic chemistry by Jonathan Clayden, Nick Greeves and Stuart Warren
- University General Chemistry by C.N. Rao, 1st edition (2000), Macmillan Publishers, India,
- Principles of Physical Chemistry, S.H. Maron and C.F. Prutton, Collier, 4th edition (1965)Macmillan Ltd.
- The elements of Physical Chemistry, Atkins P, de Paula J., W. H. FreemanPublication, 5th edition (2009),USA
- An Introduction to Electrochemistry, Samuel Glasstone, BiblioBazaar, USA edition reprint, 2011,
- Physical Chemistry for biological sciences, Chang R, 1st edition, (2005), University Science Books, USA
- Physical Chemistry, David Ball, Thoson Learning, 1st edition, (2003), USA.
- Essentials of Physical Chemistry, B S Bahl, G D Tuli, ArunBahl, S. Chand Limited, 24th Edition(2000) India.
- Concise Inorganic Chemistry, Author: J. D. Lee, John Wiley & Sons, USA, 5th edition (2008),
- Organic Chemistry, Morrison Robert Thornton, Pearson Publication, Dorling Kindersley (India Pvt. Ltd.), 6th Edition
- Guide book to Mechanism in Organic Chemistry by Peter Sykes, 6th Edition, (1996), Prentice Hall, India.

Course Code: 19ScBioU102 Course Name: Introduction to Physics –I

Teaching Scheme: TH: 3Hours/Week Examination Scheme: CIA: 40 Marks

Credit: 02 End-Sem: 60 Marks

Prerequisites:

- Equilibrium and Elasticity,
- Measurements
- Introductory Classical Physics
- Gravitation
- Introductory Optics
- Heat and thermodynamics

Course Objectives:

• To Study Measurements, Waves and Oscillations, Fluid Mechanics, Electricity and Magnetism

Course Outcomes:

On completion of the course, student will be able to-

- Apply the knowledge of basic physics to Biological Sciences
- Know the relevance of physics in Life Sciences
- Understand the concepts behind a few Biophysical instruments

Semester I

Course Contents	
------------------------	--

Chapter 1	Measurements	3 lectures
	• Physical quantities: fundamental and derived units.	
	• System of Units.	
	• Order of magnitude.	
	• Length: radius of proton to astronomical distances.	
	• Mass: atomic mass unit to mass of Earth.	
	• Time: fast elementary particle to age of Earth.	
	• Inter-conversion of units.	
Chapter 2	Fluid Mechanics	8 lectures
	 Fluids: Definition, Pressure, Density. Measurement of pressure. Various units of Pressure and their inter conversion. Compressible and Incompressible fluids. Archimedes' principle and application. Streamline and Turbulent flow. Critical Velocity and Reynold's number (physical significance). Equation of continuity. Flow of liquids through capillaries. Poiseuille's law (physical significance only). Bernoulli's theorem and its application to Venturimeter and pitot tube (physical significance only). 	

	• Viscosity, Newton's law of viscosity, Coefficient of viscosity. Ostwald's	
Chapter 3	Viscometer. Relevance to Life Sciences.	5 lectures
	 Surface tension and surface energy. Cohecine and Adhecine former. 	5 rootaros
	 Configure and Addesive forces. Capillary action Angle of contact Wettability 	
	Eactors affecting Surface Tension	
	 Applications of Surface Tension. Relevance to Life Sciences 	
Chapter 4	Wayes and Oscillations	7 lectures
Chapter 4	• Types of Wayes (transverse and longitudinal)	/ lectures
	 Principle of Superposition of Wayes 	
	 Standing and Travelling Waves 	
	 Sound Waves as Pressure Waves. Audible, Ultrasonic, and Infrasonic 	
	Waves.	
	Characteristics of Sound Waves.	
	• Beats.	
	• Doppler Effect.	
	Applications in Life Sciences.	
Chapter 5	Geometrical Optics	5 lectures
	• Reflection, Refraction (Snell's Law).	
	• Types of lenses, Combinational lenses, Radius of Curvature, Focal length,	
	Lens maker equation.	
	• Microscopes. Optical power, Diopter.	
	• Magnification.	
	• Mirrors.	
Chapter 6	Aderrations Electricity and Magnetism	Q loctures
Chapter 0	Electric charge Quantization and Conservation of charge	olectures
	 Conductors Insulators and Semiconductors 	
	 Coulomb's law Electric field intensity Electric lines of force 	
	 Magnetic field. Lorentz force. Poles and Dinoles 	
	 Concept and Definition of Magnetic Induction. 	
	• Gauss' Law in Magnetism.	
	• Magnetic Intensity, Magnetic Susceptibility, Magnetization.	
	• Diamagnetism, Paramagnetism, Ferromagnetism.	
	• Nuclear magnetism, Biomagnetism.	
	Total Lectures	36

- 1. Concepts of Physics. Volume I and Volume II. (2010). H. C. Verma.
- 2. Fundamentals of Physics, 9th edition (2010). David Halliday, Robert Resnick, Jearl Walker.
- 3. Sears and Zeemansky's University Physics, 13th edition (2012). Hugh Young, Roger Freedman, A. Lewis Ford.
- 4. A Textbook of Optics (2001). Dr. N. Subrahmanyan, Brij Lal, Dr. M. N. Avadhanulu. By S. Chand publications.
- 5. Electricity, Magnetism, and Electromagnetic Theory (2018). S. R. Manohara, Shubha A. By S. Chand publications.

Course Code: 19ScBioU103 Course Name: Basics of Plant Science I

Teaching Scheme: TH: 3Hours/Week Examination Scheme: CIA: 40 Marks

Credit: 02 End-Sem: 60 Marks

Prerequisite:

• To know Basic Botany in 11th and 12th Std.

Course Objectives:

- To Study Morphology and Anatomy, different classes of Plant Groups and also identification of plants on the Basics of their Morphology.
- To learn Plant Taxonomy and Plant Identification

Course Outcomes:

• The student will be able to understand plant group and identify plants on the basis of their Morphology.

Semester I

course contents		
Chapter 1	Plant as a Life Form	2 lectures
	Introduction to Plant World and Life Form- General	
	& Unique features of Plants	
Chapter 2	Introduction to Plant Groups and their Classification	10 lectures
	• Algae,	
	• Fungi,	
	• Bryophytes,	
	• Pteridophytes,	
	• Gymnosperms,	
	• Angiosperms with examples	
Chapter 3	Morphology and Anatomy of Vegetative and Reproductive Plant Organs :	10 lectures
	• Leaf	
	• Shoot	
	• Root	
	• Flower	
	Inflorescence	
	• Fruit	
Chapter 4	Introduction to Plant Taxonomy	7 lectures
	• Fundamental components of	
	Taxonomy, Identification, Nomenclature,	
	Classification	
	Botanical Nomenclature Principles and Rules of	
	ICBN, Ranks and Names; Binomial System;	
Chapter 5	Plant Tissues	7 lectures

•	Meristems Root and Shoot Apical Meristems and their Histological Organization. Tissues – Meristematic and Permanent Tissues (Simple and Complex)	
	Total Lectures	36

1. A textbook of Botany (Algae, Fungi, Virus, Microbiology, Plant pathology, Bryophytes, Pteridophytes and Gymnosperms) V. Singh, Pandey and Jain, Rastogi Publications, Shivaji Road, Meerut.

2.Botany for Degree Students, B.R Vashista, Sinha ,S. Chand and Company Ltd, Ramnagar, New Delhi.

3.College Botany Vol - I.B.P. Pandey Chand and Company Ltd, Ram Nagar, New Delhi.

4. College Botany, Vol -II,S. Sundarajan, Himalaya Publishing House, New Delhi.

5. College Botany (For degree students), AC Datta, Manzar Khan Oxford University, Press Kolkata.

6. College Botany Vol- I Gangulee Das and Dutta, New Central Book Agency, Kolkata.

7. AText Book of Botany Vol II, Pandey and Ajanta Chaddha, Vikas Publication Pvt. Ltd, New Delhi

8. A Classbook of Botany, Dutta A.C., (Oxford University Press, UK)(2000)

9. Taxonomy of Vascular Plants (Scientific Pub.), Lawrence G.H. (2012)

10. Anatomy of Seed Plants (Wiley, USA), Esau K. (1977)

11. Plant Anatomy: An Applied Approach (Blackwell Sci, USA), Cutler, Botha & Stevenson (2007)

12. College Botany Vol I, II and III (New Central Book Agency, Kolkata), Ganguli, Das Dutta (2011)

13. The Morphology of Gymnosperms (The Structure and Evolution of Primitive seed Plants), Sporne K.R. (1971), Hutchinson University Library, London.

14. Vascular Differentiation in Plants. Esau, K. (1965), Holt, Rinehart and Winston, N.Y., Chicago, San Francisco, Toronto, London.

15. An Introduction to Plant Anatomy, Eames, A.J., and Mc Daniels, L.H. (1979) Tata-McGraw Hill Publishing Co., (P) Ltd. Bombay, New Delhi.

16.Plant Anatomy, (2nd Edition) Esau. K. (1980), Wiley Eastern Ltd., New Delhi

Progressive Education Society's Modern College of Arts, Science and Commerce (Autonomous), Shivajinagar, Pune - 5 FirstYear of B.Sc.Biotechnology

(2019 Course)

Course Code: 19ScBioU104 Course Name: Basics of Animal Science l

Teaching Scheme: TH: 3 Hours/Week Examination Scheme: CIA: 40 Marks Credit:02 End-Sem: 60 Marks

Prerequisite:

• Basics Zoology from XI and XII science

Course Objectives:

- To study basics of Animal Sciences, different types of Animal Tissues, Animal Physiology
- To learn the Morphology of Honey Bee in detail

Course Outcomes:

On completion of the course, the student will be able to-

- Understand the basic classification of Kingdom Animalia, Animal physiology (Respiration and Hormones)
- To understand Morphology of Honey Bee in detail also Apiculture and its Economic importance

Semester I

Course	Contents

Chapter 1	Introduction to Kingdom Animalia	7 lectures
	 Outline classification of kingdom Animalia Non-chordates (characteristic features and representative examples.) Chordates (characteristic features and representative examples. 	
Chapter 2	Animal Tissue Types	8 lectures
	 Tissue types and subtypes with suitable examples Epithelial tissue Muscle tissue Nervous tissue Connective tissue 	
Chapter 3	Respiration	10 lectures
	 Respiration in Water (fish), Air (amphibian, reptiles, birds and mammals), Air breathing fish. Respiratory pigments: Different types of respiratory pigments. Oxygen dissociation curves. Effect of temperature, pH, CO2, Organic Phosphate Compounds, Altitude. Oxygen dissociation curve of Fetal Blood. Dissociation curves of invertebrates. Dissociation curve and Body size. 	
Chapter 4	Hormones	6 lectures

	 Invertebrates: control and integration: function and role of nervous system, insect endocrinology Introduction to Endocrine, Paracrine and Autocrine systems Endocrine system in Vertebrates 	
Chapter 5	Type Study: Non-chordate : Honeybee: (visit)	5 lectures
	 Different species of Honey bee (<i>Apis sp.</i>) Morphology: Structure of Head, Mouthparts, Legs, Wings, Sting Apparatus; Social Organization, Apiculture 	
	Total Lectures	36

1. Chordate Zoology S. Chand & Company Ltd. Ram Nagar. New Delhi. 2. Jordan, E.L. and Verma P.S. 1978

2. Invertebrate Zoology. S. Chand & Company Ltd. Ram Nagar. New Delhi.

3. Modern Text Book of Zoology: Invertebrates., R.L.Kotpal. Publisher, Rastogi Publications, 2012.

4. Animal Physiology Adaptation and Environment (fifth edition); Knut Schmidt-Nielsen

5. Introduction to general Zoology Vol 1. K. Chaki, G. Kundu, S. Sarkar

6. Principles of Animal Physiology; Pearson Publications; 2nd edition; C. Moyes& P. Schulte

Progressive Education Society's Modern College of Arts, Science and Commerce (Autonomous),

Shivajinagar, Pune - 5 FirstYear of B.Sc.Biotechnology (2019 Course)

Course Code:19ScBioU105 Course Name: Mathematics and Statistics I

Teaching Scheme: TH: 4 Hours/Week Examination Scheme: CIA: 40 Marks

Credits: 02 End-Sem: 60 Marks

Prerequisite:

- XI & XII Science Mathematics
- Knowledge of Complex Numbers

Course Objectives:

- Trigonometry.
- Limit and Continuity
- Set theory
- Introduction to Statistics
- Descriptive Biostatistics

Course Outcomes:

On completion of the course, student will be able to-

- Know about trigonometric applications
- Solve sequence and series problems
- Know about Data sampling, Central limit theorem, Skewness and Kurtosis.

Semester I

Mathematics		
Chapter 1	Pre-requisites	3 lectures
	 Sets: Definition, Types of sets (empty set, finite sets, infinite sets, equal sets, singleton sets), with Venn diagram Subset, Operations on set(union, intersection) Number system: N ⊂ Z ⊂ Q ⊂ R ⊂ C Graphs:X,1/X,X²,X³, X ,logx,e^{x},sinx, cosx, line, parabola, hyperbola, ellipse, circle, biological graphs 	
Chapter 2	Trigonometry	5 lectures
	 Using triangle prove the trigonometric ratios, Trigonometry table of angles Trigonometric identities Pythagoras formula Trigonometric applications in Physics and Biology 	
Chapter 3	Limits and Continuity	7 lectures
	 Definition, Standard examples Continuity: ∈ −δdefinition, examples Differentiation: definition, formula chart of 	

	 derivatives Integration:definition(area under the curve concept), formula chart of integration Sequence:definition, examples Series:definition, examples Applications:Fibonacci sequence,Geometric series(finite,infinite),A.P., G.P, Golden ratio 	
	Statistics	
Chapter 4	Introduction to Statistics	5lectures
	 Need of Statistics in Biology, collection and organization / Classification, Summarization and Analysis of Biological Data Data, Variables, Parameters, Populations and Samples, Types of Sampling Distribution Representation of data using Frequency Distribution diagram. 	
Chapter 5	Descriptive Biostatistics	10 lectures
	 Descriptive Measure, Measures of Central tendency (A.M., G.M.,H.M. frequency, Median and mode) Measures of Dispersion(for Ungrouped and Polygon, Grouped data) Skewness and Kurtosis with interpretation Scatter diagram, Correlation, Simple Linear Regression 	
	Total Lectures	36

- Ordinary and Partial Differential Equations by Dr. M.D.Raisinghanhia
- S.Chand all books
- Trigonometry (9th edition) by Lial, Margaret; Hornsby, John; Schneider, David I.
- Trigonometry-4th edition by Marek Dugopolski
- An Elementary Course in Partial Differential Equation by T.Amarnath

Progressive Education Society's Modern College of Arts, Science and Commerce (Autonomous), Shivajinagar, Pune - 5 FirstYear of B.Sc.Biotechnology (2019 Course)

Course Code: 19ScBioU106 Course Name:Biological Chemistry l

Teaching Scheme: TH: 3 Hours/Week

Credit: 02

Examination Scheme: CIA: 40 Marks

End-Sem: 60 Marks

Prerequisite: Basic Chemistry from XI & XII Science. **Course Objectives:**

- To study basics of Biochemistry and important reactions which will help understand various processes in Biological system.
- To study Chemistry of Biomolecules.
- To understand Structure and Functions of Biomolecules.

Course Outcomes:

On completion of the course, student will be able to-

- Study all basic fundamentals of Chemistry and Biomolecules.
- Understand Structure and Functions of Biomolecules.

Semester I

Chapter-1	Biological Chemistry	5 lectures
	 Introduction to Biochemistry Historical perspective- cellular and chemical foundation Genetic and Evolutionary Foundations Origin of Life Abiotic Production of Biomolecules 	
Chapter-2	Water	8lectures
	 Water as Biological medium Properties of Water Anomalous behaviour, Weak Interactions in Water Interaction of Biological molecules in water, Hydrogen bonding Ionization of water, Osmosis, Concept of pH Titration of weak acids Buffers Biological buffers Types of bond Covalent and noncovalent interactions in biomolecules with suitable example Functional groups and modification of functional group relevant to biomolecules. 	
Chapter-3	Basic Biomolecule	12lectures

1. Outlines of Biochemistry: 5th Edition, (2009), Erice Conn & Paul Stumpf: John Wiley and Sons, USA

2. Fundamentals of Biochemistry. 3rd Edition, (2008), Donald Voet& Judith Voet, John Wiley and Sons, Inc. USA

3. Principles of Biochemistry, 4th edition (1997), JefforyZubey, McGraw-Hill College, USA

4. Biochemistry: 7th Edition, (2012), Jeremy Berg, LubertStryer, W.H.Freeman and company, NY

5. Lehninger, Principles of Biochemistry. 5th Edition (2008), David Nelson & Michael Cox, W.H. Freeman and company, NY.

6. Biochemistry. 5th Edition, (Copyright 2013), Reginald Garett and Charles Grisham, Brook/Cole, Cengage Learning, Boston, USA.

7. An Introduction to Practical Biochemistry.3rd Edition, (2001), David Plummer, Tata McGraw Hill Edu.Pvt.Ltd. New Delhi, India

8. Biochemical Methods.1st, (1995), S.Sadashivam, A.Manickam, New Age International Publishers, India

Course Code:19ScBioU107 Course Name: Biophysics

Teaching Scheme: TH: 3Hours/Week Examination Scheme: CIA: 40 Marks

Credit: 02 End-Sem: 60 Marks

Prerequisite: Basic Physics from XI and XII Science **Course Objectives:**

- To study different models of Atomic structure, Radioactivity concept and measurement, Biophysical properties of membrane
- To learn Separation techniques, Evaporation, Distillation, Chromatography, Electrophoresis and Microscopy

Course Outcomes:

On completion of the course, student will be able to-

• Understand different models of Atomic structure, Radioactivity concept and measurement, Biophysical properties of membrane

Semester I

Chapter I	Atomic Structure	6 lectures
	 Historical background up to Bohr model. 	
	• Significance of second and third postulate	
	of Bohr's model.	
	• Derivation of Radius and Energy value.	
	• Bohr – Sommerfeld Model.	
	• Vector Atom Model.	
	• Quantum Numbers.	
	Electronic Configuration.	
Chapter 2	Radioactivity	8 lectures
	 Concept and History. Atomic number, Mass number, Isotopes, Isotones, Isobars. Nucleus, Nuclear forces and Properties Nuclear Models (liquid drop and shell model) Alpha, Beta & Gamma radiation. Half-life Concept (numericals) Biological Applications of Radioactivity. Measurement of Radioactivity: GM Counter and Scintillation counter 	
Chapter 3	Biophysical properties of Membrane	8 lectures
	Membrane Models	
	• Membrane transport: active and passive transport, Co-transport (Uniport, Symport	

	 and Antiport) Osmosis, Diffusion. Electrical properties of Membrane Membrane potential and Action potential (Depolarization, Hyperpolarization and repolarization of Neuronal membrane). Nernst Equation. 	
Chapter 4	Introduction to Separation Techniques	8 lectures
	 Basics of Evaporation and Distillation Chromatography, Electrophoresis, Types & Application 	
Chapter 5	Microscopy	6 lectures
	Resolving Power, Numerical Aperture, Image formation	
	 Types- light field & dark field microscopy Working and Construction of Simple, Compound & Stereo microscope, Inverted microscope, Phase Contrast microscope, Fluorescence microscope Electron microscope, SEM & TEM. Scanning Probe Microscopy, Acoustic Microscopy. 	

1. Biophysics, an introduction. 1stedition. (2002) Cotteril R. John Willey and Sons Ltd., USA

2. Biophysics. 1stedition (2002), Pattabhi V and Gautham N. Kluwer Academic Publisher, USA.

3. Textbook of optics and atomic physics, 8thedition (1989) P.P. Khandelwal, Himlaya Publishing House, India.

4. Instrumentation measurements and analysis – 2ndedition (2003). Nakra and Choudhari, Tata Mc Graw Hill, India.
5. Nuclear Physics: An Introduction. 2ndedition (2011). S. B. Patel. Anshan Publication, India

CourseCode:19ScBioU108 Course Name: Microbiology1

Teaching Scheme: TH: 3Hours/Week Examination Scheme: CIA: 40 Marks

Credits: 02 End-Sem: 60 Marks

Prerequisite:

• Basic concepts of microbiology

Course Objectives:

- To study in detail the structure and characteristics of Microorganisms
- To learn the different techniques used in Microbiology

Course Outcomes:

On completion of the course, student will be able to-

- Isolate and Preserve the unknown Microorganism
- Understand the role of Microorganisms in Nature

Semester I

Chapter 1	Introduction to Microbial World	9 lectures
	 Bio-complexity of Microorganisms. Important developments leading to major discoveries. Path breaking discoveries. Product Development (18th – 20th Century includingpre golden, golden and post golden era) 	
Chapter 2	Classification of Microorganisms	9 lectures
	 Five major groups of Microorganisms: Bacteria, Fungi, Cyanobacteria, Archaea and Viruses. Introduction to Bergey's Manual 	
Chapter 3	Prokaryotic Cell Structure	9 lectures
	 Function and Ultra-structure of cell wall (Gram positive and negative) Structure of Plasma membrane 	
Chapter 4	Handling of Microorganisms and Biosafety measures	9 lectures

 Sterilization : Physical Agents - Heat, Radiation, Filtration Chemicalagents and their mode of action - Aldehydes, Halogens, Quaternaryammonium compounds, Phenol and phenolic compounds, Heavymetals, Alcohol, Dyes, and Detergents, Ethylene oxide. 	
Total Lectures	36

Reference Books:

1. Microbiology–6th Edition (2006), Pelczar M.J., Chan E.C.S., Krieg N.R., The McGraw Hill Companies Inc. NY

2. General Microbiology - Stanier R.Y., 5th edition, (1987)Macmillan Publication, UK.

3. Presscott's Microbiology, 8th edition (2010), Joanne M Willey, Joanne Willey, Linda Sherwood, Linda M Sherwood, Christopher J Woolverton, Chris Woolverton, McGrawHil Science Engineering, USA.

4. Brock Biology of Microorganisms 9th ed. (2000), John M. Martinko, Jack Parker. Prentice hall, Upper Saddle River, New Jersey.

5. Presscott's Microbiology, 8th edition (2010), Joanne M Willey, Joanne Willey, Linda Sherwood, Linda M Sherwood, Christopher J Woolverton, Chris Woolverton, McGrawHil Science Engineering, USA.

Course Code: 19ScBioU109 Course Name: Practical in Chemistry and Biochemistry I

Teaching Scheme: TH: 3 Hours/Week	Credit: 02
Examination Scheme: CIA: 40 Marks	End-Sem: 60 Marks

Prerequisite: Basic chemistry from XI & XII Science. **Course Objectives:**

- To study basics of Chemistry and important reactions which will help various processes in biological system
- To study estimation methods of important biomolecules.

Course Outcomes:

On completion of the course, student will be able to– Study all basic fundamentals of chemistry and extend their analytical thinking in research field.

Semester I

	Practicals in Chemistry	
Practical-1	Preparation of solutions	1 Practical
	To prepare Buffer solutions having different	
	Concentrations	
Practical -2	Titrations	1 Practical
	a. To study Acid base titration based by conductivity measurement.b. To determine Alkali content in antacid tablet using HCl	
Practical -3	Chemical Kinetics	1 Practical
	To study Kinetics of Ester Hydrolysis	
Practical -4	Thermochemistry	1 Practical
	To determine Enthalpy and Entropy change of a reaction $2FeCl_3 + 3Mg \rightarrow 2Fe + 3MgCl_2$	
Practical -5	Hardness of Water	1 Practical
	To estimate Hardness of Water by using EDTA	
Practical -6	Qualitative Analysis	2 Practical
	To perform Qualitative test for – Hydrocarbons, Alcohols, Aldehyde, Ketones, Aniline, Amide	
	Practicals in Biochemistry	
Practical -1	Biological Buffers	1 Practical
	Preparation of Solutions and Buffers.	
Practical -2	Estimations	2 Practical

	a. To estimate concentration of lipids in given sampleb. To estimate concentration of reducing sugar in given sample by DNSA method.	
Practical- 3	Saponification number	1 Practical
	To find out saponification number of given lipid	
Practical -4	Qualitative test for sugar	1 Practical
	To perform Spot tests for sugar and cholesterol	
Practical- 5	Isoelectric point	1 Practical
	To find out isoelectric point p ^I of amino acid glycine.	

Course Code:19ScBioU110 Course Name: Practical in Physics & Biophysics I

Teaching Scheme: TH: 3 Hours/Week Examination Scheme: CIA: 40 Marks

Credit: 02 End-Sem:60 Marks

Prerequisite: Basic physics from XI & XII **Course Objectives:**

- To learn separation techniques, evaporation, distillation, chromatography, electrophoresis and microscopy
- To learn the functioning and calibration of few biophysical instruments

Course Outcomes:

On completion of the course, student will be able to-

- Understand all basic working principles of bioinstrumentation and separation techniques
- Measure at scales smaller than 1 mm.
- Calibrate spectrometer

Semester I

Course Contents		
Practicals in Biophysics		
Practical-1	Working and Calibration	1 Practical
	Electronic Balance	
	Micropipette	
Practical 2	Microscopy	1 Practical
	Components and working of Bright field Compound microscope	
Practical 3	Components and Working	2 Practical
	Electrophoresis	
	Chromatography	
Practical 4	Components and Working	2 Practical
	Distillation unit	
	• Soxhlet unit	
	Practicals in Physics	
Practical-1	Measuring Instruments	2 Practical
	Use of Measuring Instruments	
	(Vernier calipers, Micrometer Screw Gauge,	
	Travelling Microscope).	
Practical-2	Coefficient of Viscosity	1 Practical
	To determine the viscosity of a given liquid by	
	Rotating Cylinder Method	
Practical-3	Spectrometer	1 Practical
	To calibrate given spectrometer using	
	Schuster's method	

Practical-4	Electronic Components	1 Practical
	To Study of electronic components	
Practical-5	Plane Diffraction Grating	1 Practical
	To determine the wavelength of given LASER	
	using a Plane Diffraction Grating.	

Course Code:19ScBioU111 Course Name:Practicals in Bioscience I

Teaching Scheme: TH: 3 Hours/ Week Examination Scheme: CIA:40 Marks

Credits: 02 End-Sem: 60 Marks

Prerequisite:

• Basic knowledge of Zoology

Course Objectives:

- To Study Paramecium, Earthworm and Amphioxus morphology and reproduction
- To study Honey bee morphology

Course Outcomes:

On completion of the course, student will be able to-

- Dissect and identify different body parts of Honey bee
- Understand Paramecium, Earthworm and Amphioxus morphology

Semester I

	Zoology	
Chapter 1	Study of Paramecium	2 practical
	MorphologyReproduction: sexual and asexual types	
Chapter 2	Study of Earthworm	1practical
	MorphologyHabitatApplications	
Chapter 3	Study of Amphioxus	1 practical
	MorphologyHabitatApplications	
Chapter 4	Dissection of Honey Bee: (visit)	1 practical
	 Mounting of Mouth parts, Pollen basket, AntennaCleaner, Sting Apparatus, Legs and Wings 	
Chapter 5	Staging and Staining	1 practical
	Preparation of vital stain, slide preparationSewage water analysis under microscope	

	Botany	
Practical 1	To Study of characteristics features of the following	1 Practical
	• Algae	
	• Fungi	
	• Bryophytes	
	• Pteridophytes	
	• Gymnosperms	
	• Angiosperms	
Practical 2	Study the Anatomy of Monocot	1 Practical
	• Study the Anatomy of root, stem and leaf of monocot and	
	dicot	
	plant by taking sections and staining	
	(Single and Double staining.)	
Practical 3	Study of Plant Cell Types	1 Practical
	 Study of plant cell types using squash techniques and 	
	Maceration.	
Practical 4	Studies of Families	1 Practical
	 To study of Plant taxonomy of any Three family 	2 Practical
Practical 5	Study of Different Inflorescences	1 Practical

Course Code:19ScBioU112 Course Name: Practicals in Microbiology and Statistics I

Teaching Scheme: TH: 3 Hours/Week Examination Scheme: CIA: 40 Marks

Credits: 02 End-Sem: 60 Marks

Prerequisite:

• Basic concepts of microbiology

Course Objectives:

- To study in detail the structure and characteristics of microorganisms
- To learn the different techniques used in microbiology

Course Outcomes:

On completion of the course, student will be able to-

- Isolate and preserve the unknown microorganism
- Understand the role of microorganisms in nature

Semester I

	Practicals in Microbiology	
Practical 1	Introduction to MicrobiologyPracticals	2 Practical
	Introduction to Microbiology	
	Laboratory and Aseptic Transfer Techniques, Sterility	
	testing	
Practical 2	Preparation of Media	1 Practical
	Preparations of Media for bacterial/fungal culture	
Practical 3	Isolation of Microorganisms	1 Practical
	Isolation of bacteria by streak plate technique and	
	preservation of microorganisms	
Practical 4	Enumeration Techniques	2 Practical
	a) Pour plate method	
	b) Spread plate method	
	Practicals in Statistics	
Practical 1	Data Representation	3Practical
	Data representation using various graphical types	
Practical 2	Correlation and regression analysis	3 Practical
	Correlation and Regression Analysis	
	of data and graphical presentation	

Course Code: 19ScBioU201 Course Name: Fundamentals of Chemistry II

Teaching Scheme: TH: 3Hours/Week Examination Scheme: CIA: 40 Marks

Credits: 02 End-Sem: 60 Marks

Prerequisite: Knowledge of Basic chemistry from XI & XII Science. Course Objectives:

- To study Basics of chemistry
- Important reactions which will help various processes in biological system
- To study importance of pHand buffer in chemical and biochemical reactions
- To understand chemical kinetics of chemical and biochemical reactions
- To expertize students in biochemical calculations

Course Outcomes:

On completion of the course, student will be able to-

- Study all basic fundamentals of chemistry
- Extend their analytical thinking in research field.

Semester I

Chapter-1	Ionic equilibria	12Lectures
	 pH,buffer, Dissociation Constant,pK values Solubility Product, Indicators in titration. Equilibrium constant, Le Chatelier's principle, Acid and bases Strength of acid &bases, pH of aqueous solutions, Acid-base titrations, Titration curves, Solubility product &Applications Ionic product Condition for precipitation, Buffers, Buffer action,Henderson equation & related problems Osmosis, law of osmotic pressureand its measurement, determination of molecular weight from osmotic pressure Properties of water, water as a reactantinteraction of biomolecules withwater 	
Chapter-2	Chemical kinetics	9Lectures
	 Rates of reactions, order & molecularity, zero, first & second order reactions, Differential and integrated rate equation, half-lifeperiods, Arrhenius equation, collision theory of reaction rate, temperature dependent reaction rates 	
Chapter-3	Electrochemistry	9Lectures
	• Electrochemical cell, half cell, reaction, reduction	

	 potential, electrochemical series, Thermodynamic potential function from cell potential measurement, Liquid junction potential, Huckel theory, overvoltage/ overpotential 	
Chapter-4	Basics of mole concept	6Lectures
	 Mole concept, Determination of molecular weight by gram molecular volumerelationship, Problems based on mole concept, Solutions, colligative properties Methods of expressing concentrations, strength, Normality, Molarity and Molality, ppm, Standardization of solutions, pH, buffer systems, dissociation constant, pK value, Preparation of standard solution of acids and bases, Problems related to acid base titrations, volumetric experiments, acidimetry, alkalimetry, permanganometry, dichrometry, iodometry. 	

- Stereochemistry: Conformation and mechanism by P.S.Kalsi
- Organic chemistry by Jonathan Clayden, nick Greeves and Stuart Warren
- University General Chemistry by C.N. Rao, 1stedition (2000), Macmillan Publishers, India,
- Principles of Physical Chemistry, S.H. Maron and C.F. Prutton, Collier, 4th edition (1965) Macmillan Ltd.
- The elements of Physical Chemistry, Atkins P, de Paula J., W. H. Freeman Publication, 5thedition (2009),USA
- An Introduction to Electrochemistry, Samuel Glasstone, BiblioBazaar, USA edition reprint, 2011,
- Physical Chemistry for biological sciences, Chang R, 1stedition, (2005), University Science Books, USA
- Physical Chemistry, David Ball, Thoson Learning, 1stedition, (2003), USA.
- Essentials of Physical Chemistry, B S Bahl, G D Tuli, ArunBahl, S. Chand Limited, 24thedition(2000) India.
- Concise Inorganic Chemistry, Author: J. D. Lee, John Wiley & Sons, USA, 5thedition (2008),
- Organic Chemistry, Morrison Robert Thornton, Pearson Publication, Dorling Kindersley (India Pvt. Ltd.), 6thedition
- Guide book to Mechanism in Organic Chemistry by Peter Sykes, 6thedition, (1996), Prentice Hall, India.

Progressive Education Society's Modern College of Arts, Science and Commerce (Autonomous),

Shivajinagar, Pune - 5 First Year of B.Sc. Biotechnology (2019 Course)

Course Code: 19ScBioU202 Course Name: Biophysics& Instrumentation

Teaching Scheme: TH: 3 Hours/Week Examination Scheme: CIA: 40 Marks

Credits: 02 End-Sem: 60 Marks

Prerequisite: Basic Biology and Physics from XI and XII Science **Course Objectives:**

- To study basics of instrumentations: Spectroscopy, Centrifugation, pH meter, Refrigeration.
- To learn Thermometers

Course Outcomes:

On completion of the course, student will be able to-

• Understand basics of instrumentations: Spectroscopy, Centrifugation, pH meter, Refrigeration.

Semester II

Chantan 1	C tu a	10 1
Chapter 1	 Spectroscopy Nature of light and EMR Characteristics of EMR, Electromagnetic spectrum Interaction with matter: Absorption, Excitation, Emission. Absorption spectroscopy, Beers & Lambert's Law. Construction, working principle and applications (Biomolecules) of Colorimeter, Spectrophotometer, Flurometer. 	10 lectures
Chapter 2	Biophysical techniques II	8 lectures
	 Centrifugation, Sedimentation, Principle of Centrifuge, RCF, Types of Centrifuge and Centrifugation. Solubility & Precipitation, Dialysis, Reverse Dialysis, Precipitating agent, Factors affecting Solubility. 	
Chapter 3	pH meter	7 lectures
	 pH concept Electrodes Acid base titration of amino acid Isoelectric pH Conductometer& its application. 	
Chapter 4	Thermoregulation	5 lectures

	HomeostasisTemperature measurement.Different types of Thermometers	
Chapter 5	Refrigeration	6 lectures
	 Temperature & critical pressure, Carnot cycle and concepts used in refrigeration, Refrigeration principle, Adiabatic & Isothermal process, conditions for good refrigerant. Introduction to Cryopreservation 	

1. Biophysics, An Introduction. 1st edition. (2002) Cotteril R. John Willey and Sons Ltd., USA

2. Biophysics. 1stedition (2002), Pattabhi V and Gautham N. Kluwer Academic Publisher, USA.

3. Textbook of Optics and Atomic Physics, 8thedition (1989) P.P. Khandelwal, Himlaya Publishing House, India.

4. Instrumentation measurements and analysis – 2ndedition (2003). Nakra and Choudhari, Tata McGraw Hill, India.

5. Nuclear Physics: An Introduction. 2ndedition (2011). S. B. Patel. Anshan Publication, India

Course Code: 19ScBioU203 Course Name: Basics of Plant Science II

Teaching Scheme: TH:3Hours/Week Examination Scheme: CIA: 40 Marks Credit: 02 End-Sem: 60 Marks

Prerequisite:

• Knowledge of plant physiology

Course Objectives:

- To study Plant physiology
- To learn Coordination manner and how internal structure functions in Coordination manner

Course Outcomes:

• On completion of the course, student will be able to-understand how the plant does all the processes in coordination manner.

Semester II

Major Pathways in Plant Metabolism	6Lectures
Photosynthesis: Introduction	
Light reaction, Cyclic and	
non-cyclicphotophosphorylation.	
Dark reaction $-C3$, C4 cycle.	
Factors affecting photosynthesis	
• Respiration: Introduction, definition, types of	
respiration (aerobic and anaerobic).	
Mechanism of glycolysis, Kreb's cycle and	
terminal oxidation.	
Physical Process of Water Absorption	8 Lectures
• Physical properties of water, Importance of	
water to plant life.	
• Diffusion,: – Definition, - Significance,	
• Mechanism, - Laws and	
Factors affecting diffusion	
• Osmosis; Definition, -Mechanism,	
Significance,	
• Types of osmosis – Endosmosis.	
Exosmosis.	
• Osmotic pressure (OP).	
• Turgor pressure (TP) and wall pressure (WP)	
Relation between OP_DPD (Suction pressure)	
and TP	
	 Major Pathways in Plant Metabolism Photosynthesis: Introduction Light reaction, Cyclic and non-cyclicphotophosphorylation. Dark reaction – C3, C4 cycle. Factors affecting photosynthesis Respiration: Introduction, definition, types of respiration (aerobic and anaerobic). Mechanism of glycolysis, Kreb's cycle and terminal oxidation. Physical Process of Water Absorption Physical properties of water, Importance of water to plant life. Diffusion,: – Definition, - Significance, Mechanism, - Laws and Factors affecting diffusion Osmosis; Definition, -Mechanism, Significance , Types of osmosis – Endosmosis, Exosmosis, Osmotic pressure (OP), Turgor pressure (TP) and wall pressure (WP) Relation between OP, DPD (Suctionpressure) and TP

Chapter 3	Ascent of Sap and Transpiration	6 Lectures
	 Ascent of sap.Introduction, meaning, mechanism and theories. Transpiration – Definition, Types of transpiration, 	
	• Stomata : Structure and mechanism of opening and closing mechanism of stomata	
Chapter 4	Mineral Nutrition of Plants	4 Lectures
	 Essential elements (macro and micronutrients) and their role in plant metabolism, deficiency symptoms. 	
Chapter 5	Physiology of flowering	4 Lectures
	Photoperiodism andVernalisationRole of phytochrome in flowering	
Chapter 6	Plant growth regulators.	5 Lectures
	 Introduction, Physiological effects of - Auxins, Gibberellins, Cytokinins, ABA, Ethylene and Brassinosteroidsin plant development 	
Chapter 8	Photo-biology	3 Lectures
	 Metabolism, movement and photo- morphogenesis(vegetative) 	

1. Fundamentals of Plant Physiology (Mac. Millan, New York), Devlin R.M. (1983)

2. A Classbook of Botany (Oxford University Press, UK), Dutta A.C. (2000)

3. College Botany Vol I, II and III (New Central BookAgency, Kolkata), Ganguli, Das Dutta (2011)

4.) Introductory Plant Physiology Prentice Hall of India. Noggle, R. and Fritz (1989

5. Photosynthesis, metabolism, Control and Physiology ELBS/Longmans - London. Lawlor. D.W. (1989)

6. Introduction to Plant Physiology. Mayer, Anderson and Bonning (1965)

D. Van Nostrand Publishing Co., N.Y.

7. Plant Physiology, Tata McGraw Hill Publishers (P) Ltd., New Delhi. Mukherjee, S. A.K. Ghosh (1998)

8. Plant Physiology CBS Publishers and Printers, New Delhi. Salisbury, F.B and C.W. Ross (1999)

9. Biochemistry-the Chemistry of life, McGraw Hill Book Co., London, N.Y., New Delhi, Paris, Singapore, Tokyo. Plummer, D.(1989)

10. Plant Biochemistry. . Harcourt Asia (P) Ltd., India and Academic Press, Singapore. Day, P.M. and Harborne, J.B. (Eds.,) (2000)

11. Fundamentals of Plant Physiology. V. K. Jain, S. Chand & Co. New Delhi.

Private Limited, New Delhi

12. Plant Physiology by Verma V. ,Emkay Publications, New Delhi

Course Code: 19ScBioU204 Course Name: Basics of Animal Sciences II

Teaching Scheme: TH: 3 Hours/Week Examination Scheme: CIA: 40 Marks Prerequisite:

Credits:02 End-Sem: 60 Marks

• Basic Zoology from XI and XII Science **Course Objectives:**

- - To study: Animal physiology, Parasitology and Economic zoology • Introduction to the concept of Animal Model Organism.
- **Course Outcomes:**

On completion of the course, student will be able to understand-

- Animal physiology (Circulation, excretion in vertebrates and invertebrates), basics of Parasiotology ٠ (Plasmodium sp., Taeniasp, Fasciola sp.,)
- Applications of Zoology (Aquaculture, Vermiculture, Sericulture and Animal Tissue Culture) •
- Animal model organisms (Hydra, Drosophila and C. elegans). •

Semester II

Chapter 1	Circulation	8 lectures
	 Introduction to circulatory system Invertebrate circulation Vertebrate circulation: Fish, amphibian, reptiles, birds and mammals. Regulation of heart beat Circulation during exercise Blood coagulation. 	
Chapter 2	Excretion	8 lectures
	 Organs of excretion in invertebrates: Protonephridia and metanephridia, molluscan kidney, antennal gland of crustaceans and Malphighian tubules of insects. Nitrogen excretion: Ammonia, Urea and Uric acid with suitable examples. Organs of excretion in vertebrates: Kidneys. Excretion in fish, amphibian, reptiles, birds and mammals. 	
Chapter 3	Type Study : Chordate : Frog / Toad	8 lectures

	 (Anatomy and Physiology) Circulatory System (Heart,Arterial and Venous Systems), Nervous System (CNS and PNS), Sense Organs Urinogenital System Reproductive system 	
Chapter 4	Introduction to Parasitology	5 lectures
	 Study of <i>Plasmodium sp.</i> Study of <i>Taenia sp.</i> Study of<i>Fasciola sp.</i> 	
Chapter 5	Applications of Zoology: (visit)	4 lectures
	 Aquaculture Sericulture Vermiculture Animal tissue culture 	
Chapter 6	Introduction to animal model organism	3 lectures
	 What are model organisms, need and characteristics of model organisms Hydra Drosophila 	

1. Economic Zoology, Shukla & Upadhyaya, 4th Edition., Rastogi Publications, 2009.

2. Modern Parasitology: A Textbook of Parasitology, 2nd edition, (1993) F. E. G. Cox, Wiley & Sons, USA

3. Sericulture: www.csb.gov.in/publications/books by Central Silk Board, Ministry of Textiles - Govt. of India

4. Animal Physiology Adaptation and Environment (fifth edition); Knut Schmidt-Nielsen

5. Introduction to General Zoology Vol 1.:K. Chaki, G. Kundu, S. Sarkar

6. Principles of Animal Physiology; Pearson Publications; 2nd edition; C. Moyes& P. Schulte.

Course Code:19ScBioU205 Course Name: Mathematics and Statistics II

Teaching Scheme: TH: 4 Hours/Week Examination Scheme: CIA: 40 Marks

Credits:02 End-Sem: 60 Marks

Prerequisites: Limit, Continuity, Differentiation

Course Objectives:

- Matrices and System of Linear equations
- Partial Derivatives
- Differential Equation
- Probability and Probability distribution
- Hypothesis Testing and Correlation

Course Outcomes:

On completion of the course, student will be able to-

- Solve differential equations
- Solve system of linear equations
- Find maxima and minima of the function.
- Find probability and probability distribution
- Find Hypothesis testing and correlation

Course Contents

Semster II

Chapter 1	Matrices	7 lectures
	• Definition,	
	• Types of matrices (zero, identity, square, unit,	
	scalar, triangular, diagonal, upper triangular,	
	lower triangular, symmetric)	
	Addition of matrices	
	 Multiplication of matrices, 	
	• Determinant(singular, non-singular)	
	 Minor, cofactor, adjoint, 	
	• Inverse of a matrix	
	• System of linear equations:	
	• Row echelon form,	
	• Rank of matrix,	
	 Homogeneous and non-homogeneous system 	
	AX=B.	
	• Eigenvalues, eigenvectors,	
Chapter 2	Partial Differentiation	4 lectures

	• Definition in limit form,	
	• Properties:(u.v rule, u/v rule)	
	• Chain rule.	
	• Partial derivatives of higher order.	
	• Stationary points, Saddle points,	
	• Necessary and sufficient condition for maxima	
	and minima.	
	• Applications: Wave equation, heat equation.	
	Laplace equation.	
Chapter 3	Differential Equation	4 lectures
	• Types (ordinary, partial)	
	• Order and degree of differential equation,	
	• Homogeneous and non-homogeneous equation	
	differential equation,	
	• Variable separable form	
	(M dx+Ndy=0),	
	• Exact d.e., solution,	
	• Integrating factor for non-exact d.e.	
	• lineard.e.	
	• Applications: growth and decay, Law of	
	Cooling	
	Statistics	
Chapter 4	Probability and probability distribution	8 lectures
	Basics of Probability theory-	
	Definitions and simple problems	
	• Bionomial distribution and the	
	Poisson distribution, Normal	
	distribution and their application in	
	biosciences	
Chapter 5	Hypothesis testing and correlation	7 lectures
	• Null and alternate hypothesis,	
	significance level, types of errors,	
	Test statistics, Testing mean,	
	proportion,testing variance	
	distribution of test statistics (t and z)	
	• Chi square test, Introduction to (one	
	way and two way)	
	ANOVA	

- 1. Ordinary and Partial Differential Equations by Dr. M.D.Raisinghanhia
- 2. S.Chand all books
- Stehand an books
 Trigonometry (9th edition) by Lial, Margaret; Hornsby, John; Schneider, David I.
 Trigonometry-4th edition by Marek Dugopolski
 An Elementary Course in Partial Differential Equation by T.Amarnath

Course Code: 19ScBioU206 Course Name: Biological Chemistryll

Prerequisite: Basic chemistry from XI & XII Science. **Course Objectives:**

- To understand amino acids, proteins, nucleic acid and their chemical basis for life.
- To understand enzymes as biological catalyst and their role in life science.

Course Outcomes:

- On completion of the course, the student will be able to-
- Understand all basic fundamentals of biochemistry and extend their analytical thinking in research field.

Chapter 1	Protein	12 lectures
	 Proteins: Introduction, Polymer of Amino acids, Classification of amino acids, Essential amino acids, Configuration, properties, zwitterion, titration of amino acid, isoelectric point pI, Properties of peptide bond, Primary structure, Reactions of oligopeptide with trypsin and chymotrypsin, Secondary structure (alpha helix, beta pleated sheets, pitch value) Secondary repeats Tertiary and quaternary structure with example. Denaturation and renaturation 	
Chapter 2	Vitamins	8 lectures
	 Fat soluble (A,D,E,K) and water soluble Vit. C, Thiamine Riboflavin, Niacin PIP CoenzymeA, Lipoic acid Folic acid and B12 	
Chapter 3	Enzymes	10 lectures

	Biocatalyst	
	Specificity	
	Active site	
	• Energy of activation,	
	• Lock and key	
	• Induced fit hypothesis	
	Prosthetic groups	
	Cofactors	
	• Coenzyme	
	• Holoenzyme	
	• Apoenzyme,	
	• IUB system of enzymes classification.	
	• Enzyme inhibition	
	Basics of enzyme kinetics	
	• Parameters affecting enzyme activity (temp,	
	pH, substrate, cofactor,enzyme con.)	
Chapter 4	Nucleic Acid	6 lectures
	Chemical names and structures of nitrogen	
	bases	
	Nucleosides	
	Nucleotides	
	Polynucleotide	
	• DNA and	
	• RNA,	
	• Forces stabilizing nucleic acid structure,	
	concept of reannealing of DNA	

1. Outlines of Biochemistry: 5th Edition, (2009), Erice Conn & Paul Stumpf ; John Wiley and Sons, USA

2. Fundamentals of Biochemistry. 3rdEdition, (2008), Donald Voet& Judith Voet, John Wiley and Sons, Inc. USA

3. Principles of Biochemistry, 4th Edition (1997), JefforyZubey, McGraw-Hill College, USA

4. Biochemistry: 7th Edition, (2012), Jeremy Berg, LubertStryer, W.H.Freeman and company, NY

5. Lehninger , Principles of Biochemistry. 5thEdition (2008), David Nelson & Michael Cox, W.H. Freeman and company, NY.

6. Biochemistry. 5th Edition, (copyright 2013), Reginald Garett and Charles Grisham, Brook/Cole, Cengage Learning, Boston, USA.

7. An Introduction to Practical Biochemistry.3rdEdition, (2001), David Plummer, Tata McGraw Hill Edu.Pvt.Ltd. New Delhi, India

8. Biochemical Methods.1st(1995), S.Sadashivam, A.Manickam, New Age International Publishers, India

Course Code: 19ScBioU207 Course Name: Microbiologyll

Teaching Scheme: TH: 3Hours/Week Examination Scheme: CIA: 40 Marks Prerequisite:

Credits: 02 End-Sem: 60 Marks

• Basic concepts of microbiology

Course Objectives:

- To study in detail the structure and characteristics of microorganisms
- To learn the different techniques used in microbiology

Course Outcomes:

On completion of the course, student will be able to-

- Isolate and preserve the unknown microorganism
- Understand the role of microorganisms in Nature

Semester II

Course Contents

Chapter 1	Techniques in Microbiology	9 lectures
	 Cell Enumeration and quantification of Growth Total Count- Breeds count, Direct microscopic count, haemocytometer, turbidity. Viable Count- Spread plate, pour plate method Microscopy: Wet mount and dry mount. Staining Techniques - Definitions: Classification of stains, Stain(Basic and Acidic), Fixative, Mordant, Decoloriser, Accentuator Staining techniques for following (Monochrome, Negative, Differential (Gram, Acid fast, Blood staining), Structural features and Special staining of Spore, Flagella, Cell wall, Nucleic acid, Capsule) 	
Chapter 2	Microbial Growth	9 lectures
	 Growth curve, Introduction to kinetics of growth, Generation time, Growth rate. Reproduction in microorganisms : Binary Fission, Asexual, Sexual, Lytic, Lysogenic Cycle 	
Chapter 3	Design of media and growth requirements	9 lectures

	 Types of media and Composition Temperature and Oxygen. Basic Considerations – Nutritional, Hydrogen ion concentration, Nutritional classification of bacteria Cultivation – <i>In vitro</i> (Streak plate method) - Concept of Pure culture, co-culture and Mixed culture, Colony characteristics and Biofilm formation. Preservation and Maintenance methods for microbial cultures 	
Chapter 4	Microbial interaction and applications	9 lectures
	 Microbe-Plant, Microbe-Animal, Microbe-Microbe interaction, Application of microbes in industry 	

1. Microbiology–6thEdition (2006), Pelczar M.J., Chan E.C.S., Krieg N.R., The McGraw Hill Companies Inc. NY

 General Microbiology - Stanier R.Y., 5th Edition, (1987) Macmillan Publication, UK.
 Presscott's Microbiology, 8th Edition (2010), Joanne M Willey, Joanne Willey, Linda Sherwood, Linda M Sherwood, Christopher J Woolverton, Chris Woolverton, McGrawHil Science Engineering, USA.

4. Brock Biology of Microorganisms 9thed. (2000), John M. Martinko, Jack Parker. Prentice Hall, Upper Saddle River, New Jersey.

Course Code: 19ScBioU208 Course Name: Computer and Applications

Teaching Scheme: TH: 3Hours/Week Examination Scheme: CIA: 40 Marks Prerequisite:

Credits:02 End-Sem: 60 Marks

• Basic handling of Computers

Course Objectives:

- To Study Computer languages for Biology
- To learn the basics of Bioinformatics required in Biology.

Course Outcomes:

On completion of the course, student will be able to-

- Use XL & PPT
- To understand basics of Bioinformatics

Semester II

Course	Contents
--------	----------

Chapter 1	Introduction to Computers	9 lectures
	History:	
	• Generations of computers (I, II, III, IV, V)	
	Modern computers:	
	The workstation, The Minicomputer, Mainframe Computers,	
	Parallel processing Computer & The Super Computer.	
	Introduction to computers:	
	 Overview and functions of a computer system 	
	Input and output devices	
	• Storage devices: Hard disk, Diskette, Magnetic tape,	
	RAID, ZIP devices, Digital tape, CD-ROM, DVD	
	(capacity and access time)	
	• Introduction to operating system:	
	Operating system concept-Windows and unix/Linux	
Chapter 2	Data Processing	9 lectures
	Data processing & presentation:	
	Data processing & presentation: Introduction	
	Data processing & presentation:IntroductionMS office (Word, Excel & Power Point)	
	 Data processing & presentation: Introduction MS office (Word, Excel & Power Point) Computer viruses: 	
	 Data processing & presentation: Introduction MS office (Word, Excel & Power Point) Computer viruses: An overview of Computer viruses 	
	 Data processing & presentation: Introduction MS office (Word, Excel & Power Point) Computer viruses: An overview of Computer viruses What is a virus? Virus symptoms, How do they get transmitted? 	
	 Data processing & presentation: Introduction MS office (Word, Excel & Power Point) Computer viruses: An overview of Computer viruses What is a virus? Virus symptoms, How do they get transmitted? General Precautions 	
	 Data processing & presentation: Introduction MS office (Word, Excel & Power Point) Computer viruses: An overview of Computer viruses What is a virus? Virus symptoms, How do they get transmitted? General Precautions Internet searches: 	
	 Data processing & presentation: Introduction MS office (Word, Excel & Power Point) Computer viruses: An overview of Computer viruses What is a virus? Virus symptoms, How do they get transmitted? General Precautions Internet searches: Concepts in text-based searching 	
	 Data processing & presentation: Introduction MS office (Word, Excel & Power Point) Computer viruses: An overview of Computer viruses What is a virus? Virus symptoms, How do they get transmitted? General Precautions Internet searches: Concepts in text-based searching Searching Medline. Pub Med, bibliographic database 	
Chapter 3	 Data processing & presentation: Introduction MS office (Word, Excel & Power Point) Computer viruses: An overview of Computer viruses What is a virus? Virus symptoms, How do they get transmitted? General Precautions Internet searches: Concepts in text-based searching Searching Medline. Pub Med, bibliographic database Databases	9 lectures
Chapter 3	Data processing & presentation: Introduction • MS office (Word, Excel & Power Point) Computer viruses: An overview of Computer viruses What is a virus? Virus symptoms, How do they get transmitted? • General Precautions Internet searches: Concepts in text-based searching • Searching Medline. Pub Med, bibliographic database Databases	9 lectures

	Types of Databases	
	Basic concepts in:	
	Data Abstraction	
	Data Models	
	Instances & Schemes	
	• E-R Model (Entity and entity sets; Relations and	
	relationship sets; E-R diagrams;	
	Reducing E-R Diagrams to tables)	
	Network Data Model: Basic concepts	
	Hierarchical Data Model: Basic concepts	
	Multimedia Database: Basic concepts and Applications	
	Indexing and Hashing	
	• B + Tree indexed files	
	• B Tree indexed files	
	Static Hash functions	
	• Dynamic Hash functions	
	Text Databases	
	Introduction & Overview of Biological database,	
	• Types of Biological Database	
Chapter 4	Bioinformatics	9 lectures
	Bioinformatics	
	• Introduction to bioinformatics, History, Goals, Relation	
	to other fields, Introduction to DNA sequence.	
	· 1	

- 1) Bioinformatics –Principles and Applications by Zhumur Ghosh, BibekanandMallick-Oxford university press
- 2) Introduction to Bioinformatics by Teresa Attwood and David.J. Parry Smith-Pearson Education
- 3) Computer Fundamentals, 4th Edition (2004) P.K. Sinha, BPB publication, India
- 4) Computer Networks. 4th Edition (2008). Tanenbaum. Pearson Education, India
- 5) Introduction To Database Management Systems, 1st Edition, (2004), AtulKahate, Pearson Education, India

Course Code: 19ScBioU209 Course Name:Practicals in Chemistry and Biochemistry II

Teaching Scheme: TH: 3 Hours/Week Examination Scheme: CIA: 40 Marks

Credits:02 End-Sem: 60 Marks

Prerequisite: Basic chemistry and biology from XI & XII Science. **Course Objectives:**

- To study basics of Chemistry and important reactions which will help various processes in Biological system
- To study Estimation methods of important biomolecules.

Course Outcomes:

On completion of the course, student will be able to-

• Study all basic fundamentals of chemistry and extend their analytical thinking in the research field.

Semester II

Practicals in Chemistry			
Practical	Title	No. of Practical 6P	
Practical-1	Viscometer	1 Practical	
	• To determine viscosity of a given liquid by Ostwald's viscometer		
Practical-2	Titration	1 Practical	
	• To determine content of acetic acid in vinegar using NaOH		
Practical-3	Titration	1 Practical	
	• To determine normality/molarity usingacid base volumetric titration		
Practical-4	Stereochemistry	1 Practical	
	• To study different conformations of biomolecules using models		
Practical-5	Separation techniques	2 Practical	
	 To study Separation Techniques like Recrystallization, distillation, sublimation, To separate plant pigments by TLC 		
	Practicals in Biochemistry		
Practical	Title	Practical	
Practical-1	Estimations	2 Practical	
	• Estimation of concentration of protein by Biuret method		

	• Estimation of concentration of protein by Lowery's method	
Practical-2	Melting temperature of Nucleic Acid	1 Practical
	• To determine T _m of DNA	
Practical-3	Thin Layer Chromatography	2 Practical
	• To separate amino acids by thin layer chromatography (TLC)	
Practical-4	Enzyme Activity	1 Practical
	• To find out enzyme activity (amylase)	

Course Code: 19ScBioU210 Course Name: Practical in Microbiology and Bioinstrumentation II

Teaching Scheme: TH: 3 Hours/Week Examination Scheme: CIA: 40 Marks

Credits:02 End-Sem: 60 Marks

Prerequisite:Basic concepts of Microbiology,Physics and Biology **Course Objectives:**

- To study basics of instrumentations: Spectroscopy, Centrifugation, pH meter.
- To study in detail the structure and characteristics of microorganisms
- To learn the different techniques used in microbiology

Course Outcomes:

Course Contents

On completion of the course, student will be able to-

- Understand basics of instrumentations: Spectroscopy, Centrifugation, pH meter.
- Isolate and preserve the unknown microorganism
- Understand the role of microorganisms in nature

Semester II

course contents			
Practicals in Bioinstrumentation			
Practical	Title	No of Practical 6P	
Practical 1	To study Principle, Components and working of-	2practicals	
	• Beer and Lambert's Law		
	Colorimeter		
	Spectrophotomete		
Practical2	To study Absorption Spectrum of:	2 practicals	
	• Protein		
	• DNA		
Practical 3	pH meter:	1 practical	
	• Working and Standardization of pH meter		
Practical 4	Centrifugation	1 practical	
	• Types		
	Types of rotors		
	Types of centrifugations		
	Components and Working		

Course Code: 19ScBioU211 Course Name: Practical in Bioscience II

Teaching Scheme: TH: 3 Hours/ Week Examination Scheme: CIA: 40 Marks

Credits: 02 End-Sem: 60 Marks

Prerequisite:

• Basic Zoology from XI & XII Science

Course Objectives:

- To Study the physiological aspects of plants
- To learn metabolism of certain pathways
- To study morphology and reproduction in Hydra,
- To study morphology, lifecycle and mutants of Drosophila
- To study parasitology of *Plasmodium sp.* and *Fasciola sp.*

Course Outcomes:

On completion of the course, student will be able to-

- Practicality they will understand physiology of plants
- Understand morphology and reproduction in Hydra
- Understand Morphology, lifecycle and identify different mutants of Drosophila.
- Understand parasitology of *Plasmodium sp.* and *Fasciola sp.*

Semester II

Animal Sciences II		
Practical-1	Study of Hydra:	2Practicals
	Morphology	
	Reproduction	
Practical-2	Study of Drosophila:	2Practicals
	 Morphology Sexual dimorphism Lifecycle (temporary mounts of developmental stages: larva, pupa and adult) 	
	• Eye and wing mutants	
Practical-3	Parasitology	2Practicals
	Plasmodium sp.Fasciola sp.	

Plant Sciences II		
Practical-1	Study of Structure of stomata	1 Practical

	• Study the Structure of stomata (dicot and	
	monocot)	
Practical-2	Study of Diffusion Pressure Deficit	1 Practical
	Determination of Diffusion Pressure	
	Deficit using potato tubers. (D.P.D.)	
Practical-3	Study of Rate of respiration	1 Practical
	• Determination of Rate of Respiration	
Practical-4	Study of Osmosis and Turgor Pressure	1 Practical
	• Study the process of Osmosis and Turgor	
	pressure	
Practical- 5	Study of mineral deficiency	1 Practical
	Study of Mineral Deficiency Symptoms	
	using Plant material/photographs	
Practical -6	Study of transpiration	1 Practical
	• Demonstration of transpiration by	
	Ganongs' photometer	
	• Demonstration of ascent of	
	Sap/Transpiration pull.	

Course Code:19ScBioU212 Course Name: Practicals in Computer applications and statistics II

Teaching Scheme: TH: 3 Hours/Week	Credits:02
Examination Scheme: CIA: 40 Marks	End-Sem: 60 Marks

Course Objectives: To understand the basics of computer required for various Life Science courses under Biotechnology and to gain basics as well as applied knowledge of Bioinformatics

Course Outcomes:

On completion of the course, student will be able to-

• Understand basic concepts of Bioinformatics and biotechnology which will help the student industry as well as research.

Semester II

Practicals in Computer Applications		
Practical -1	Study of Operating Systems	1 Practical
	 Tutorials operating systems: DOS File handling: copy, rename, delete, type Directory structure: make, rename, move directory 	
Practical -2	Study of Word Processing	1 Practical
	 Word Processing (Microsoft Word): Creating, Saving & Operating a document, Editing, Inserting, Deleting, Formatting, Moving & Copying Text, Find & Replace, Spell Checker & Grammar Check, Document Enhancement (Borders, Shading, Header, Footer), Printing Document (Page Layout, Margins), Introduction to the use of Wizards & Templates, Working with Graphics (Word Art), Working with Tables & Charts, Inserting Pictures 	
Practical -3	Study of Spreadsheet	2 Practical
	 Spreadsheet Applications (Microsoft Excel): Worksheet Basics: Entering information in a Worksheet, Saving & Opening a Worksheet, Editing, Copying & Moving Data, Inserting, Deleting & Moving Columns & Rows, Clearing. 	
Practical- 4	Study of Database applications	2 Practical
	 Database Applications (Microsoft Access): Fields, Records, Files, Organization of Files. Access Modes: Updating Records, Querying, Reports, Forms & sub forms. 	
Practicals in Statistics		
Practical -1	Introduction to MS Excel	1 Practical

	 Introduction to MS Excel and use of Spreadsheets for Data organization and basic Mathematics calculations 	
Practical -2	Study of Data Analysis Tools	2 Practical
	Hypothesis testing using 'Data analysis tools': t-test, Chi square test.	
Practical -3	Study of Analysis of Variance	1 Practical
	Analysis of variance	
Practical -4	Study of Correlation and Regression Analysis	2 Practical
	Correlation and regression analysis of data and graphical representation	