Course Code : Maths 101 Course Name : Calculus

Teaching Scheme: TH: 5 Hours/Week, TUT : 1 Hr/Wk. Examination Scheme: CIA : 50 Marks

Credit : 04 End-Sem : 50 Marks

Prerequisites:

• Limit, Continuity, Differentiation, Integration

Course Objectives:

- To Study applications of Differentation
- To Study applications of Integration

Course Outcomes:

On completion of the course, student will be able to-

- Find Partial derivatives, Directional derivatives, Extrema of Functions
- Solve Riemann integration, improper integration
- Solve First and second order differential equations.

Semester I

	Semester 1	
Course Contents		
Chapter 1	Differential Calculus	12 Lectures
	 Graphs of functions of one variable Trigonometric Functions and their inverses, derivatives of inverse trigonometric functions, implicit differentiation, related rates. Partial derivatives, Higher Order Partial Derivatives, Chain rule for partial derivatives, Directional derivatives, Application of Partial Derivatives- tangent planes, Normal Line, Extrema for functions of several variables and double integrals, 	
Chapter 2	Integral Calculus	12 Lectures
	 Fundamental theorem of calculus, integration by trigonometric and algebraic substitutions, use of partial fractions with application to areas and volumes., Riemann integration, further techniques of integration and applications, Improper integrals 	
Chapter 3	Differential Equations	12 Lectures

•	First order differential equations-Linear
	Equations, Separable Equations, Exact
	Equations,
•	Second Order Differential Equations -
	Homogeneous and Nonhomogeneous, Second order linear differential equations with constant
	coefficients

- 1. Mathematical Analysis by S.C. Malik and Savita Arora, New Age International Private Limited (Fifth Edition), 2017
- 2. Ordinary and partial differential equations by Dr. M. D. Raisinghania, S. Chand (18th Edition), 1976

Modern College of Arts, Science and Commerce (Autonomous), Shivajinagar, Pune - 5 First Year of B.Sc.Blended (Biosciences) (2019 Course)

Course Code: PHY 101 Course Name: Physics 1: Introductory Classical Physics

Teaching Scheme: TH: 3 Hours/Week
Examination Scheme: CIA: 50 Marks

Credit: 03 End-Sem: 50 Marks

Prerequisite Courses:

- Kinematics, equation of motion, elasticity, waves and oscillations, fluid mechanics, geometrical optics **Course Objectives:**
 - Students will be given the basic information of introductory classical physics, waves, gravitation

Course Outcomes:

On completion of the course, student will be able to-

• Apply the basic knowledge of classical mechanics in day to day life

Semester I

Course	Contents
--------	----------

Chapter-1	Classical mechanics	10 Lectures
	• Newton's laws of motion.	
	• Momentum and impulse.	
	• Translational, vibrational and rotational energy.	
	• Simple harmonic motion.	
	Rigid body rotations	
	 Applications to biological and physical systems 	
Chapter-2	Waves and oscillations	8 Lectures
	• Reflection, refraction, superposition,	
	• Resonance, energy transport, absorption,	
	• Doppler effect.	
	 Applications to water waves, acoustics, seismology 	
Chapter-3	Gravitation	6 Lectures
	• Newton's law of gravity,	
	• Kepler's Laws.	
	 Applications to astrophysics including orbital 	
	motion, escape velocity, apparent weightlessness	
Chapter-4	Fluids	6 Lectures
	• Pressure,	
	• Buoyancy	
	• Fluid flow	
	Viscosity	
	Surface tension	
	• Applications to hydraulics, biophysics, atmospheric	
	physics, aerodynamics	
Chapter-5	Optics	6 Lectures
	Geometrical optics	
	• Dispersion,	
	• Lenses, mirrors,	
	• Interference,	

•	Diffraction,	
•	Polarisation.	
•	Applications to microscopy, imaging, vision,	
	crystallography	

Course Code: CHM 101 Course Name: General and Organic Chemistry

Teaching Scheme: TH: 3 Hours/Week Examination Scheme: CIA: 50 Marks Credit: 03 End-Sem: 50 Marks

Prerequisite Courses: Knowledge of Basic chemistry from XI & XII Science. **Course Objectives:**

- To Study Basics of chemistry
- important reactions which will help various processes in biological system
- To study importance of pH and buffer in chemical and biochemical reactions
- To understand chemical kinetics of chemical and biochemical reactions
- To expertize students in biochemical calculations

Course Outcomes:

On completion of the course, student will be able to-

- Study all basic fundamentals of chemistry
- Can extend their analytical thinking in research field.

Semester I

Course Contents

General Chemistry		
Practicals	Title	No. of Practicals
Practical-1	The Periodic Table	1 Lecture
Practical-2	Molecular Structure and Bonding	2 Lectures
	 Lewis structures Formal charge Resonance VSEPR – predicting the shapes of molecules Polarity of molecules Covalent Bonding valence bond theory (Localized Electron model) Molecular orbital theory Intermolecular forces 	
Practical-3	Water	1 Lecture
	• The biological solvent Physical characteristics and chemical properties	
Practical-4	Carbon – the basis of life	1 Lecture
Practical-5	3D molecular structure and isomerism	1 Lectures
	IsomerismStereoisomerism	
Chapter-6	Small inorganic molecules of biological importance	1 Lectures
	Phosphates and phosphoric acidNitrogenOxygen	
Chapter-7	Acids and Bases	2 Lectures
	The Nature of Acids and BasesLowry Bronsted Theory	

	• Louis Asida/Deces]
	Lewis Acids/Bases	
	Dissociation of Carboxylic Acids	
	• Amine Basicity	
	Acid Strength	
	• The pH Scale	
	• Calculating the pH of Strong Acid Solutions	
	• Calculating the pH of Weak Acid Solutions	
	• Bases	
	Strategy for Solving Acid-Base Problems: A Summary	
	• Buffers	
	Polyprotic acids	
	Gas solubility	
Chapter-8	Stoichiometry	1 Lecture
Chapter-9	Chemical Kinetics	2 Lectures
	Reaction Rates Rate Laws: An Introduction	
	• Determining the Form of the Rate Law	
	• The Integrated Rate Law Rate Laws: A Summary	
	Reaction Mechanisms	
	The Steady-State Approximation	
	A Model for Chemical Kinetics	
	Catalysis	
Chapter-10	Chemical Equilibrium	2 Lectures
	The Equilibrium Condition	
	The Equilibrium Constant	
	Equilibrium Expressions Involving Pressures	
	Heterogeneous Equilibria	
	Applications of the Equilibrium Constant	
	Solving Equilibrium Problems	
	Organic Chemistry	
Chapter-1	Structure and Bonding Alkanes(sp3 Hybridisation)	2 Lectures
	• Covalent bonding - H 2	
	• S-bonding and sp3 hybridisation in methane and ethane	
	Structural isomerism	
	 Methane, ethane, nomenclature of saturated 	
	hydrocarbons	
	 Conformational isomerism: ethane, butane 	
	• Stereochemistry, Optical activity, enantiomers and	
	their physical/chemical properties. Racemates.	
	 Designation of absolute configuration 	
	 Diastereoisomers 	
	Meso compounds	
	Cycloallkanes	
	Conformational isomerism of cyclohexanes	
Chapter-2	Structure and Bonding Alkenes(sp2 Hybridisation)	2 Lectures
	• sp hybridisation, s and p bonding in ethene	
	• Nomenclature of alkenes	
	• Nonicilculature of alkenes	
	 Geometrical isomerism 	
Chapter-3	Geometrical isomerism	1 Lecture
Chapter-3	Geometrical isomerismConjugated alkenes	1 Lecture
Chapter-3	 Geometrical isomerism Conjugated alkenes Benzene and its derivatives 	1 Lecture

	• sp hybridisation, s and p bonding in ethyne	
	• Nomenclature of alkynes	
Chapter-5	Functional Groups	1 Lecture
•	Haloalkanes	
	Alcohols	
	• Ethers	
	• Amines	
	Carbonyl compounds	
	• Carboxylic acids and derivatives	
Chapter-6	Electrophiles and Nucleophiles	2 Lectures
	Arrow conventions	
	Organic acids and bases	
	• Strengths of acids and bases: electronegativity,	
	hybridisation, resonance	
Chapter-7	Nucleophilic substitution reactions	1 Lecture
•	Nucleophiles and electrophiles SN1 and SN2 reactions	
	• Determination of mechanism by stereochemical and	
	kinetic methods	
	• Properties of good leaving groups	
	 Properties of good nucleophiles 	
Chapter-8	Elimination reactions	1 Lecture
	• E1 and E2 reactions	
	• Determination of mechanism by stereochemical and	
	kinetic methods	
	• Dehydration of alcohols	
Chapter-9	Addition reactions	1 Lecture
•	Markovnikov's rule	
	• Hydration of alkenes	
Chapter-10	Electrophilic aromatic substitution reactions	1 Lecture
*	Substitution reactions of benzene: halogenation,	
	nitration, sulfonation, Friedel-Crafts acylation and	
	alkylation	
Chapter-10	Nucleophilic addition reactions	1 Lecture
	Addition to carbonyl groups by cyanide, Grignard	
	reagents, acetylide anions	
	• Synthesis and chemistry of acids, amides, esters, acyl	
	chlorides and anhydrides	
Chapter-11	Organic redox reactions	1 Lecture
	Reductions: Catalytic hydrogenation, hydride reagents	
	Oxidations: Benzylic oxidation	
	Oxidation of primary alcohols to aldehydes then	
	carboxylic acids by Cr(VI) reagents	
	• Oxidation of secondary alcohols to ketones by Cr(VI)	
	reagents	
	Chemistry of life	
Chapter-1	Stereochemistry and Biomolecular chirality	2 Lecures
Chapter-2	Concatenation and Biopolymers	5 Lecures
	Polypeptides	
	NucleicAcids	
	Lipids	
	• Sugars	
	• Cellulose	
	Isoprenes and Turpenoids	

- Stereochemistry: Conformation and mechanism by P.S.Kalsi
- Organic chemistry by Jonathan clayden, nick greeves and stuart warren
- University General Chemistry, 1st edition (2000), C.N. R. Rao, Macmillan Publishers, India,
- 2. Principles of Physical Chemistry, 4th edition (1965), S.H. Maron and C.F. Prutton, Collier Macmillan Ltd 3. The elements of Physical Chemistry, 5th edition (2009), Atkins P, de Paula J., W. H. Freeman Publication, USA
- 4. An Introduction to Electrochemistry, edition reprint, 2011, Samuel Glasstone, BiblioBazaar, USA
- 5. Physical Chemistry for biological sciences, 1st edition, (2005), Chang R., University Science Books, USA 6. Physical Chemistry, 1st edition, (2003) David Ball, Thoson Learning, USA.
- 7. Essentials of Physical Chemistry, 24th edition, (2000), B S Bahl, G D Tuli, ArunBahl, S. Chand Limited, India.
- 8. Concise Inorganic Chemistry. 5th edition (2008), Author: J. D. Lee, John Wiley & Sons, USA.
- 9. Organic Chemistry, 6 th edition, (1992), Morrison Robert Thornton, Pearson Publication, Dorling Kindersley (India Pvt. Ltd.)
- 10. Guide book to Mechanism in Organic Chemistry by Peter Sykes, 6 th edition, (1996), Prentice Hall, India.

Course Code: Biology 101 Course Name: Evolution and Diversity of life

Teaching Scheme: TH: 3 Hours/Week Examination Scheme: CIA: 50 Marks Credit: 03 End-Sem: 50 Marks

Semester I

Course Contents: Chapter-1	Unifying themes in Biology	4 Lectures
Chapter-1	Cell theory and the origin of life	+ Lectures
	(Cell theory, living organisms are made of cells, cells	
	are smallest organizational	
	unit of life, origin of life=origin of cell; life is defined	
	by replication, mutation,	
	metabolism	
	Chemical evolution of life	
	(RNA polymers and the origins of information storage	
	and replication,	
	containment of molecules in cell-like compartments,	
	DNA as the basis for life)	
	 Life evolves 	
	Evolution and natural selection	
	Evolution and natural selection Evolution of complexity	
	Unicellular to multicellular	
	Structuralorganization – symmetrical and asymmetrical	
Chapter-2	Domains and kingdom of life	2 Lectures
	• Five kingdoms model; the tree of life	
Chapter-3	Diversity, structure and biology of major groups	24 Lectures
	• Emphasizing the major evolutionary features and the	
	evolution of body plans	
	Prokaryotes: Bacteria and Archaea	
	• Protists (Slime moulds, amoebae, primary plastids –	
	red and green algae,	
	secondary plastids – brown algae lineage,	
	dinoflagellates and apicomplexans,	
	euglenoids)	
	• Fungi (Structure and growth, nitrition, reproduction,	
	fugal phyla, mutualisms,	
	fungi and humans)	
	• Plants (Alternation of generations and the land plant	
	life cycle, bryophytes,	
	evolution of vascular tissue, lycophytes and ferns, seed	
	plants, the seed and	
	secondary growth, cycads and Ginkgo, conifer diversity	
	and biology, Angiosperm	
	structure, biology and diversity, the flower, double	

Course Contents:

	 fertilization. Animals (Simple animals – sponges to flatworms; annelids, molluscs, nematodes and arthropods; echinoderms; chordates 	
Chapter-4	Viruses and Prions	2 Lectures
	Viruses are subcellular organisms	

- 1. Reece, Taylor, Simon and Dickey Campbell Biology: concepts and connections, 7th Edition, Pearson Education (Singapore) Pvt. Ltd.
- 2. General Zoology By Goodnight and others, IBH Publishing Co.,
- 3. R.L. Kotpal, 10th Edition.,2009 Modern text book of Zoology, Invertebrates, Rastogi publications, Meerut.
- 4. Parker J. and Haswell, W., Text-Book of Zoology, ELBS Edition.
- 5. Cleveland Hickman Jr., Larry Roberts, Susan Keen, Allan Larson and David Eisenhour Animal Diversity, 8th Edition, McGraw Hill Publication.
- 6. Das, Datta and Gangulee College Botany (Vol I), Published by New Central Books Agency (P). Ltd.
- 7. V. Verma Botany, 2010, Ane Books Pvt Ltd.
- 8. A.C. Dutta Botany for Degree Students, 6th Edition, Oxford University Press, New York.
- 9. Richard S.K. Barnes The Diversity of Living Organisms, John Wiley and Sons Ltd., Oxford, United Kingdom.
- 10. Lynn Margulis and Michael J. Chapman Kingdoms and Domains: An Illustrated Guide to the Phyla of Life on Earth, 4th edition, Academic Press; (1st edition in January 26, 2009).
- 11. Brian K. Hall; BenediktHallgrímsson Strickberger's Evolution, Fourth Edition, Jones and Bartlett Publishers, Inc.
- 12. Mark Ridley, 2004, 3rd Edition Evolution, Blackwell Publishing.
- 13. Carl T. Bergstrom & Lee Alan Dugatkin Evolution (second edition), W. W. Norton & Company; Second edition.
- 14. Douglas J. Futuyma Evolution, 2nd/ 3rd Edition, Sinauer Associates.

Course Code: MTH 102 Course Name: Algebra

Teaching Scheme: TH: 5 Hours/Week, TUT: 1 Hr/Wk. Examination Scheme: CIA: 50 Marks

Prerequisites:

Limit, Matrices

Course Objectives:

- To Study arithmetic of Complex numbers
- To Study Mean Value Theorems
- To study Vector spaces
- To study Vectors

Course Outcomes:

On completion of the course, student will be able to-

- Find roots of the polynomials in Complex Numbers
- Solve System of linear equations using matrices
- Know about Mean Value theorems and its applications
- Know about Scalar and Vector projections
- Find Basis of vector spaces

Semester I

Course Contents:

Chapter 1	Differential Calculus	8 Lectures
	 Limits of Real Valued Functions Continuity and differentiability Mean value theorem and its applications Taylors polynomials Sequences and infinite series 	
Chapter 2	Vectors	8 Lectures
	 Basics,Magnitude, Unit Vector, Arithmetic, Dot product, Cross Product Scalar Triple product Scalar and vector projections, plane curves specified by Vector Equations 	
Chapter 3	Complex Numbers	10 Lectures
	• Arithmetic of complex numbers- addition, subtraction, multiplication,	

Credit: 04 End-Sem: 50 Marks

	 division, Sketching regions in the complex plane, De-Moivre's Theorem, Roots of polynomials The fundamental theorem of Algebra 	
Chapter 4	Linear Algebra	10 Lectures
	 System of linear equations Matrices and determinant Vectors in Real n-spaces Vector Spaces Linear independence Basis Eigen values and eigen vectors 	

- Mathematical Analysis by S.C. Malik and Savita Arora, New Age International Private Limited (Fifth Edition), 2017
- Linear Algebra by Kumerason, PHI Learning, 2000
- Schaum's Outline Series, McGraw Hill Education(Second Edition), 2017

Course Code: PHY 102 Course Name: Electricity and Magnetism

Teaching Scheme: TH: 3 Hours/Week Examination Scheme: CIA: 50 Marks

Credit: 03 End-Sem: 50 Marks

Prerequisite Courses:

• Kinematics, equation of motion, elesticity, waves and oscillations, fluid mechanics, geometrical optics **Course Objectives:**

• Students will be given the basic information of electricity, magnetism and quantum mechanics

Course Outcomes:

On completion of the course, student will be able to-

• Apply the basic knowledge of classical mechanics in day to day life

Semester II

Course	Contents
--------	----------

Chapter-1	Electricity and magnetism	18 Lectures
	• Electric charge and field	
	Conductors and insulators	
	Electric potential	
	Capacitance	
	• Resistance	
	Electric circuits	
	• Magnetic field	
	Biot-Savart law	
	• Faraday's law of induction	
	Maxwell's equations	
	Electromagnetic waves	
Chapter-2	Special relativity	5 Lectures
	• Frame transformations	
	Relativity of space and time	
	 Modification of classical mechanics, 	
	 Mass-energy equivalence. 	
Chapter-3	Quantum physics	6 Lectures
	• Photons	
	Blackbody radiation	
	Matter waves	
	Quantisation in atoms	
	• Interaction of light with matter	
	• x-rays.	
Chapter-4	Nuclear physics	6 Lectures
	Atomic nucleus	
	Radioactive decay	
	• half-life	
	Ionising radiation	

٠	Nuclear fission and fusion.	
•	Nuclear energy	
•	radiation safety	
•	nucleogenesis,	

- •
- 'The Feynman lectres' by Feynman TY BSc texyt book, Nirali publications •
- Principles of physics by Halliday, Resnick and WalkerS.Y.BSc mathematical methods in Physics, Nirali publications
- Concepts of modern physics by Arthur Beiser

Course Code: CHM102 Course Name: Physical and Inorganic chemistry

Teaching Scheme: TH: 3 Hours/Week Examination Scheme: CIA: 50 Marks Credit: 3C End-Sem: 50 Marks

Prerequisite Courses: Knowledge of Basic chemistry from XI & XII Science. **Course Objectives:**

- To Study Basics of chemistry
- important reactions which will help various processes in biological system

Course Outcomes:

On completion of the course, student will be able to-

- Study all basic fundamentals of chemistry
- Can extend their analytical thinking in research field.
- To study thermodynamics of various biochemical reactions

Semester II

Course Contents

1	Physical Chemistry	
Chapter-1	Gases, Kinetic theory	4 Lecture
	• Early Experiments	
	• The Gas Laws of Boyle, Charles and Avogadro	
	• The Ideal Gas Law	
	Gas Stoichiometry	
	 Dalton's Law of Partial Pressures 	
	Collisions of Gas Particles with the Container Walls	
	Intermolecular Collisions	
	Real Gases	
	Chemistry in the Atmosphere	
Chapter-2	Thermodynamics •	4 Lectures
	• The Nature of Energy	
	• Enthalpy	
	Thermodynamics of Ideal Gases	
	Calorimetry	
	• Hess's Law	
	Standard Enthalpies of Formation	
Chapter-3	Spontaneity, Entropy and Free Energy	2 Lectures
	Spontaneous processes	
	• Entropy	
	• The 2nd law of thermodynamics	
	• Free energy	
	• Free energy and equilibrium	
Chapter-4	Spectroscopy and Determination of Structure	3 Lectures
	• The EM Spectrum	
	• Mass spectrometry / combustion analysis information	
	available from molecular formulae	

	Infrared spectroscopy	
	 Nuclear magnetic resonance spectroscopy: 1H and 	
	13C	
Chapter-5	Elementary quantum theory	2 Lectures
	Inorganic chemistry	
Chapter-1	Ionic Compounds and their Solutions	2 Lectures
	 Ions: electron configurations and sizes 	
	• Lattice energy	
	Solubility equilibria and solubility products	
Chapter-2	Structures of Solids	3 Lectures
	X-ray diffraction	
	Metallic bonding	
	Sphere packing models	
	• Structures of metals	
	Structures of ionic compounds	
	Silicates	
Chapter-3	Main Group Chemistry	4 Lectures
	• Structures of the elements	
	Chemistry of main group compounds	
Chapter-4	Redox reactions and electrochemistry	4 Lectures
	• Galvanic cells and a quantitative treatment of standard	
	reduction potential	
	Concentration dependence of reduction potential	
	- Nernst equation	
	- Concentration cells	
	- Equilibrium constants	
	- Solubility constants Batteries	
	- Primary, secondary fuel cells	
	Corrosion	
	- Overpotential	
Chapter 5	Electrolysis The transition metals is surgery	1 Lecture
Chapter-5	The transition metals : a survey	1 Lecture
	Electron configurations	
	Oxidation states and ionisation energie	
	Reduction potentials First-row transition metals	
	Ores and extraction of the metal Stable oxidation states	
Chapter-6	states Coordination Chemistry	4 Lectures
Chapter-0	Coordination compounds	+ Lociulos
	Oxidation number	
	 coordination number 	
	 Coordination number Lewis acid-Lewis base interaction 	
	 Lewis acid-Lewis base interaction Ligands: properties, donor atom, denticity 	
	 Iron nutrition 	
	Nomenclature	
	 Isomerism of coordination compounds Structural isomers, ionization, linkage, coordination 	
	 Structural isomers, ionization, initiage, coordination Stereoisomerism - geometrical, optical 	
Chapter 7	Stereoisomerism - geometrical, optical Bonding in complex ions	2 Looturos
Chapter-7	Crystal-field model	2 Lectures
	 Octahedral complexes Colour and Spectrochemical series 	
	- Colour and Spectrochemical series - High- and low- spin complexes	
	- mgn- and low- spin complexes	

	-Magnetism Other coordination geometries:	
	- Tetrahedral and square planar	
Chapter-8	Transition metals in biological systems	1 Lecture
	• Abundance of transition metals in humans	

- Stereochemistry: Conformation and mechanism by P.S.Kalsi
- Organic chemistry by Jonathan clayden, nick greeves and stuart warren
- University General Chemistry, 1st edition (2000), C.N. R. Rao, Macmillan Publishers, India,
- 2. Principles of Physical Chemistry, 4th edition (1965), S.H. Maron and C.F. Prutton, Collier Macmillan Ltd 3. The elements of Physical Chemistry, 5th edition (2009), Atkins P, de Paula J., W. H. Freeman Publication, USA
- 4. An Introduction to Electrochemistry, edition reprint, 2011, Samuel Glasstone, BiblioBazaar, USA
- 5. Physical Chemistry for biological sciences, 1st edition, (2005), Chang R., University Science Books, USA 6. Physical Chemistry, 1st edition, (2003) David Ball, Thoson Learning, USA.
- 7. Essentials of Physical Chemistry, 24th edition, (2000), B S Bahl, G D Tuli, ArunBahl, S. Chand Limited, India.
- 8. Concise Inorganic Chemistry . 5th edition (2008), Author: J. D. Lee, John Wiley & Sons, USA.
- 9. Organic Chemistry, 6 th edition, (1992), Morrison Robert Thornton, Pearson Publication, Dorling Kindersley (India Pvt. Ltd.)
- 10. Guide book to Mechanism in Org
- anic Chemistry by Peter Sykes, 6 th edition, (1996), Prentice Hall, India.

Course Code: Biology 102 Course Name: Cell biology

Teaching Scheme: TH: 3 Hours/Week Examination Scheme: CIA: 50 Marks Credit: 3C End-Sem: 50 Marks

Prerequisite Courses: Knowledge of Basic biology from XI & XII Science. **Course Objectives:**

- This course will introduce the basic unit of life, or the cell, and its structural and functional elements.
- Students will learn the components of a cells and their functioning, cell division, contribution of a cell to form multicellular units, and flow of genetic information within a biological system through the central dogma of life.

Course Outcomes:

Course Contents

On completion of the course, student will be able to understand the structure and function of each organelles and cell division and central dogma of life

Semester II

Chapter-1	Structure and function of cell components	24 Lectures
	Membranes	2.2000000
	 Plasma membrane and glycocalyx 	
	 Nucleus 	
	Ribosomes	
	Endoplasmic reticulum	
	Plasmodesmata	
	Golgi and vesicles	
	Lysosomes	
	Vacuoles	
	Mitochondria	
	Plastids, Chloroplast	
	Microbodies	
	Cytoskeleton	
	Flagella, Cilia	
	Cell wall	
Chapter-2	Endosymbiosis	4 lectures
	Chloroplast	
	Mitochondria	
Chapter-3	Genetic code and central dogma of life	2 lectures
	• Nucleic acids, one gene-one polypeptide hypothesis,	
	Chromosome structure, DNA	
	synthesis, transcription, translation,	
	protein synthesis, protein targeting and	
	processing	
Chapter-4	Gene expression	2 lectures

	• prokaryotic, eukaryotic, RNA interference	
Chapter-5	Cell division	2 lectures
	• binary, budding, mitosis and meiosis, cell cycle, differentiation, aging, and death	
Chapter-6	Developmental control in multicellular systems	2 lectures
	 stem cells; embryonic development and pattern formation; cells, tissues, andorgans; signaling and developmental controls. Examples from animals andplants. 	

- Molecular Cell Biology. 7th Edition, (2012) Lodish H., Berk A, Kaiser C., KReiger M., Bretscher
- A., Ploegh H., Angelika Amon A., Matthew P. Scott M.P., W.H. Freeman and Co., USA
- Molecular Biology of the Cell, 5th Edition (2007) Bruce Alberts, Alexander Johnson, Julian Lewis,
- Martin Raff, Keith Roberts, Peter Walter. Garland Science, USA
- Cell Biology, 6th edition, (2010) Gerald Karp. John Wiley & Sons., USA
- The Cell: A Molecular Approach, 6th edition (2013), Geoffrey M. Cooper, Robert E. Hausman,
- Sinauer Associates, Inc. USA

Course Code: Lab 101 Course Name: Practicals in physics

Teaching Scheme: TH: 3 Hours/Week Examination Scheme: CIA: 50 Marks Credit: 3C End-Sem: 50 Marks

Prerequisite Courses: Knowledge of Basic physics from XI & XII Science. **Course Objectives:**

• Students will be given the basic information of electricity, magnetism and quantum mechanics

Course Outcomes:

On completion of the course, student will be able to-

• Apply the basic knowledge of classical mechanics in day to day life

Semester I

Course Contents

Practicals	Title	No. of practicals
Practical-1	Simple pendulum	1 Practical
Practical-2	Static Friction	1 practical
Practical-3	Frequency of A.C.	1 practical
Practical-4	Plane diffraction grating	1 preatical
Practical-5	M.I Of flywheel	1 practical
Practical-6	Polarimeter	1 practical

Course Code: Lab 111 Course Name: Practical in Chemistry

Teaching Scheme: TH: 3 Hours/Week Examination Scheme: CIA: 50 Marks Credit: 3C End-Sem: 50 Marks

Prerequisite Courses: Knowledge of Basic chemistry from XI & XII Science. **Course Objectives:**

- To study coordination chemistry of metal complexes
- To study electrochemistry of the reaction
- To study reduction reaction using reducing agents
- To expertize students in biochemical calculations

Course Outcomes:

On completion of the course, student will be able to-

- Study all basic fundamentals of chemistry
- Can extend their analytical thinking in research field.
- Develops practical hand

Semester II

Course Contents Practicals Title No. of Practical Practical-1 Determination of λ max by colorimetric method 1 Practical To determine λ max and concentration of a given solution of copper sulphate ammonia complex by using colorimertry Practical-2 Synthesis of coordination complexes 1 practical To synthesize hexaammine nickel (II) chloride ٠ Practical-3 Indicator constant by colorimetric method 2 practical To determine indicator constant of given acid base • solution using colorimetric method Practical-4 Reduction of benzophenone 2 practical synthesize • To diphenvl methanol from benzophenone using NaBH₄ Practical-5 Synthesis of coordination compound 2 practical To synthesize hexaammine cobalt (III)chloride • Practical-6 1 practical Potentiometry To determine formal redox potential of ferrous/ferric • system by using potentiometer Practical-7 Determination of cell constant, energy of activation and temperature coefficient To determine the cell constant by using KCl solution • To determine the temperature coefficient and • activation energy of the reaction

Course Code: Lab 121 Course Name: Practicals in Biodiversity

Teaching Scheme: TH: 3 Hours/Week Examination Scheme: CIA: 50 Marks Credit: 3C End-Sem: 50 Marks

Prerequisite Courses: Knowledge of Basic biology from XI & XII Science. **Course Objectives:**

- To study biodiversity of plants
- To study biodiversity of animals

Course Outcomes:

On completion of the course, student will be able to-

- Identify plants and animals
- Study characteristics of plants and animals and classify them in families and phylum.

Semester II

Course (Contents
----------	----------

Practicals	Title	No. of Practicals
Practical-1	Study of Bryophytes	1 Practical
Practical-2	Study of Pteridophytes	1 practical
Practical-3	Study of red and green algae	1 practical
Practical-4	Study of gymnosperms	1 practical
Practical-5	Study of fungi	1 practical
Practical-6	Phylum -Porifera, Cnidaria ,Platyhelminthes	1 practical
Practical-7	Phylum-Aschelminthes, Annelida, Arthropoda	1 practical
Practical-8	Phylum:Mollusca,Echinodermata	1 practical
Practical -9	Phylum: Hemichordata, Chordata (Pisces, Amphibi)	1 practical
Practical -10	Phylum: Chordata (Reptilia, Aves, Mammalia)	1 practical

Course Code: Lab 102 Course Name: Practicals in Chemistry

Teaching Scheme: TH: 3 Hours/Week Examination Scheme: CIA: 50 Marks Credit:03 End-Sem : 50 Marks

Prerequisite Courses: Knowledge of Basic chemistry from XI & XII Science. **Course Objectives:**

- To study coordination chemistry of metal complexes
- To study electrochemistry of the reaction
- To study reduction reaction using reducing agents
- To expertize students in biochemical calculations

Course Outcomes:

On completion of the course, student will be able to-

- Study all basic fundamentals of chemistry
- Can extend their analytical thinking in research field.
- Develops practical hand

Semester II

Course Contents: Practicals Title No. of Practicals Practical-1 Determination of λ max by colorimetric method 1 Practical To determine λ max and concentration of a given solution of copper sulphate ammonia complex by using colorimertry Practical-2 Synthesis of coordination complexes 1 practical To synthesize hexaammine nickel (II) chloride ٠ Practical-3 Indicator constant by colorimetric method 2 practical To determine indicator constant of given acid base • solution using colorimetric method Practical-4 Reduction of benzophenone 2 practical synthesize • To diphenvl methanol from benzophenone using NaBH₄ Practical-5 Synthesis of coordination compound 2 practical To synthesize hexaammine cobalt (III)chloride • Practical-6 1 practical Potentiometry To determine formal redox potential of ferrous/ferric • system by using potentiometer Practical-7 Determination of cell constant, energy of activation and temperature coefficient To determine the cell constant by using KCl solution • To determine the temperature coefficient and • activation energy of the reaction

Course Code: Lab 122 Course Name: Practicals in cell biology

Teaching Scheme: TH: 3 Hours/Week Examination Scheme: CIA: 50 Marks Credit: 03 End-Sem: 50 Marks

Prerequisite Courses: Knowledge of Basic biology from XI & XII Science. **Course Objectives:**

- To study mitosis and meiosis in plants
- To study cell counting using haemocytometer

Course Outcomes:

On completion of the course, student will be able to-

- Distinguish between mitosis and meiosis
- Isolate nucleus, mitochondria
- Study characteristics of cells

Semester II

Course Contents

Practicals	Title	No. of practicals
Practical-1	Study of mitosis	1 Practical
Practical-2	Study of meiosis in plant material	1 practical
Practical-3	Observation of cell organelles	1 practical
Practical-4	Cell counting using Haemocytometer	1 practical
Practical-5	Use of Micrometry	1 practical
Practical-6	Isolation of nucleus, mitochondria of lysosomal	
	functions	1 practical
Practical-7	Study of cell lysis	1 practical
Practical-8	Differential white cell count	1 practical